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TRACK-VEHICLE IN-PLANE DYNAMICAL MODEL
CONSISTING OF A BEAM AND LUMPED
"PARAMETER COMPONENTS

Istvan ZoBORY and Vilmos ZOLLER

Department of Railway Vehicles
Technical University of Budapest
H-1521 Budapest, Hungary

Abstract

This paper deals with the exact mathematical description of a simple in-plane track—
vehicle dynamical system model. The railway track is modelled by a beam on damped
linear foundation, while the two-axle railway vehicle is modelled by a lumped parameter
linear dynamical system. The interaction between the track and the vehicle in vertical
plane is described by the Hertzian spring and damper, belonging to the linearized vertical
contact force transfer. Formulation of the mathematical models, as well as the closed form
solutions for the excitation-free system are presented.

Keywords: track/vehicle dynamical system, hybrid systems of differential equations.

1. The Track—Vehicle System Model

The system model is shown in Fig. I. The in-plane dynamical model is a
typical hybrid one, as it consists of a continuum subsystem, i.e. the track,
treated as an Euler-Bernoulli beam on damped Winkler foundation, and a
lumped parameter vehicle subsystem describing the two-axle railway vehicle.
The connection of the two subsystems mentioned is realized by the contact
springs/dampers.

The track model parameters are the following: rail density p, cross
section area of the two rails A, moment of inertia of the two rails I, Young
modulus of the rail E, foundation stiffness s and foundation damping k. The
vertical position of the rails is described by bivariate function z(z,t), the so
called rail deflection function. Here z stands for the longitudinal coordinate
of the track.

The vehicle parameters are as follows: wheelset masses m; and ms,
carbody mass m, carbody moment of inertia ©, vertical wheelset suspen-
sion stiffnesses s; and sg, vertical wheelset suspension dampings k; and kg,
axlebase I = I; + Iy, coefficient a of the velocity-square dependent air drag
and the vertical distance h between the action line of the air drag and the
mass centre of the carbody. There are four free coordinates describing the
positions of the masses in the vehicle subsystem: vertical displacement of
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Fig. 1. Vehicle-track system model {continuum rail model)

the carbody zg, angular displacement of the carbody %, and vertical dis-
placements of the wheelsets Z; and Z;. Two further vertical displacements
are important on the carbody to determine the motion-state dependent ver-
tical forces transmitted through the suspension springs and dampers. The
points on the carbody located over the wheelsets are indicated in Fig. I and
their displacements can be expressed by using zp and ¥ in the following way:
21 = 29 — [13 and 2o = 2 + I3,

The interaction of the track and the vehicle is realized through the
Hertzian springs and dampers of linearized stiffness sy and damping factor
ky. The actual operation condition of the vehicle is reflected in the constant
velocity v of the carbody mass centre. The longitudinal position of the latter
under this condition is given by product vt. So, the longitudinal coordinates
of the wheelset/track contact points are z; = vt +!; and z3 = vt — .

Thus, the track—vehicle dynamical system can be characterized by pa-
rameter vector p of dimension 21. Its form is

P= [,0, A, Iv E757 k;lla l27 h7 my, ma,m, 97 81, 82, kly k27 a; SH, kH; U]T-

The motion conditions can be studied by seeking for the function z(z,t)
of the track deflection, and the free coordinates 2o(t), %(t), Z1(t) and Z3(t)
characterizing the vehicle subsystem. The governing set of motion equations
are established in the next chapter.



TRACK-VEHICLE MODEL 5
2. Mathematical Description of the System Model

The equations of motion are determined by using Newton’s 2nd law for the

.rigid body components of the vehicle subsystem, and the known equation of
the Euler-Bernoulli beam on elastic/damped foundation in the presence of
forces describing the vertical interaction between the track and the wheels.
The equations of motion of the wheelsets are the following:

Fi(Zi,Ziy Ziy 32y 2) = 8i(2i — Zi) + ki(3i — Z3) + mag — my Zi=

SH(Zi - z(vt + L,’,t)) + kH(Zz —iz(vt + L, t)), 1=1,2, (1)

dt

where L; = (=1)**1l;, ¢ = 1,2 stand for oriented lengths.
The vertical translatory motion of the carbody is governed by the
following equation:

2
Z[—S,‘(zi - Z;) — ki(z; — Z)] + mg — m Zo= 0. (2)

=1
The pitching motion equation has the following form:

2
> lsi(zi — Z) + ki3 — Z:)]L: 4 hav? — © = 0. (3)
i=1
The track deflection is described by the following fourth order hnear partial
differential equation:

&z 9%z 0Oz 2. . ' '
IEZ G +pAgg+ho +ez= ; 8(x — (vt+ Li))Fi(Zi, Z;, Ziy %, 2). (4)

Together with Egs. (1-4) also relationships
20=z1+hy =2 — Dy ()

are in force.
We are able to eliminate 2z and ¢ from Egs. (2-3) by expressing

2z — 21 lizy + I3z
= and zp = ————.
v L 0 L
This way our original system can be simplified from the point of view of the
mathematical treatment as follows.
Let us introduce functions

gi(t) - E(Zz (t)’Zi (t)’ Zi(t)v'éi (t)7 Zi(t)) + mi(Zi —g)
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fori=1,2.
Then our differential equations can be written into the form

Oz P2 02 NSs (s L)) gl) — milZ —g). (6
az4+p atZ Y szﬂz CE—(L —l-q)gz 7n’1( 1_g)7()

=1

I1E

2
g:(t) = ai; 25 +bi = silzi — Zi) + k(s — Zi) =
i=1
su(Z; — z(vt + Ly, t)) + ki (Z: .—(—ﬁz(vt + Lit)) + mi(Z; —g)  (7)
for 1 = 1,2 with

(—1)i+j+1 mL%L% (——1)i leLQg 2
% =T nL; o) Ly +h(w>'

The solution has to satisfy boundary condition

xll)rinoo z(z,t) =0 (8)
and initial conditions
zi(0) = 20, % (0) =vio, Zi(0) = Zio, Z; (0) =V, (9)

fori=1,2.

3. Solution to the Boundary Value Problem

We are looking for the solution [z, 21, 22, Z1, Z3)7 of system (6-9) in the form

8
Z(:L',t) = Z Ak(f)ewkt,
k=0

8

8
z(t) = 3 &xe™!, Zi(t) =Y Cue™™, i=1,2,
k=0 k=0

where £ = ¢ — vt, wy = 0, while the wy’s for k£ = 1,2, ...,8 are the complex
frequencies of the system and &k, ik are appropriate constants, all of them
are to be determined later on.

Substituting our expected solution into the right-hand side of Eq. (6),
the partial differential equation will have the form

842 622 82 2 8
a4 e - _= — R )%
IE@:E“ +pA8t2 +k8t + 52 ;;5(5 Li)cixe
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with ¢;0 = b; + m;g and
2
Cik = Z aijfjk — miCik ’U)Z for k = 1, 2, ,8 (10)
i=1

Then applying the theory of such partial differential equations [1-5], we can
use formulae of [7] to compute Ag(£) as

2
Ag(€) = D carB(€ — Liywy),

=1

M7 er2n ehan M7
B(n,w) = H(n) (P,(Al) + P,(Az)) — H(-n) (P,(/\S) + P,(/\4)> :
where the characteristic polynomial
P(X) = IEX* 4 pAv*>? — v(k + 2pAw) A + (s + kw + pAw?)

has neither imaginary nor multiple roots (necessary and sufficent conditions
are given in [7]), A} and A, are tHe roots of polynomial P with negative real
parts, P’ is the derivative of P, while H is Heaviside’s unit jump function.
(The formula for the multiple root case is given in [7].)

4. Determination of Complex Frequencies

Substituting the expected solutions into Egs. {7), by comparing coefficients
we obtain the system of equations '

sy (&io — Ao(Li)) — mug = s:(&o — Cio) = bi, (11)

2
wi > aii&ie = (si + kowg) (Ek — Gix) =
J=1
(syg + kpws) (ix — Ax(Le)) + miwiCan (12)
fori=1,2and k= 1,2,...,8. System (12) contains unknowns wg, &; and

Cik- In order to obtain the complex frequencies wy, £ = 1,2, ...; 8 the latter
unknowns can be eliminated. This procedure results in nonlinear equation

det (C(w)) =0, (13)
where C(w) is a w-dependent 2X2 matrix with entries
() = agjw? — (su + kuw) 4 5 — 2%
cij(w) = aj;w su+knw) 18 —
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2

Mmpwian,;
Z (—an]‘ + mném - m) w2B(Li — Ln7 U))} - miw26i]’ +

miw“aij

= si +kw’
In the above expression §;; stands for Kronecker’s symbol. The solutions
wy, Wy, ..., ws are the complex frequencies of system (6-9). With the knowl-
edge of these frequencies wy one can easily determine constants ;x and (5 by
solving linear equation system (11-12) together with initial conditions (9).

5. Conclusions

In this paper a new mathematical treatment has been elaborated for the
solution of a set of equations describing the joint problem of the combined
motions of the continuous track and the vehicle modelled as a lumped param-
eter system. The wheelsets of the vehicle are moving at a constant longitudi-
nal velocity on the elastically/dissipatively supported beam at a constant
longitudinal velocity. The two subsystems, connected with each other by
the Hertzian springs/dampers, are completely characterized through the
closed-form expressions based on the complex frequencies obtained from the
solution of the auxiliary nonlinear equation.
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Abstract

The use of the inverted pendulum experiment in teaching control theory and practice is
now widely accepted in the area of control education. This paper describes an environment
built upon an operating inverted pendulum suitable to design and test several linear
controllers by using the well known MATLAB and its toolboxes. The environment has
been designed to maximally fit to MATLAB procedures and interfaces. A significant part
of the environment is a support for identification and model based control, which provides
a MATLAB compatible mode to acquire data of the relevant variables and to generate
disturbances with predesigned characteristics. Some didactic examples — mainly from
the field of model based control — are described. As the examples present, the inverted
pendulum experiment is suitable to use it in teaching - beyond the conventional ones —
the more contemporary topics of the control science.

Keywords: education, optimal control, linear identification.

1. Introduction

Teaching control theory and practice has got great significance in the recent
years in several areas of the undergraduate and graduate level technical
education. For many years the researchers of the System and Control Labo-
ratory of the Computer and Automation Research Institute are involved in
teaching control science within the educational program of the Department
of Control and Transport Automation of the Technical University of Bu-
dapest. As the background which the transportation engineering students
possess differs from that of e.g. control engineering students, a significant
point in teaching control science must be the good interpretation of the-
oretical results. Computer simulations are not sufficient, really operating
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devices are preferable for the purpose of understanding the objectives, re-
quirements, means and methods of control actions. Therefore the attention
has been oriented to some real experiments which represent the control ac-
tions in descriptive enough manner. The inverted pendulum experiment has
found to be optimal for the purposes stated: :

e The effect of the control actions is obvious — without control, the rod
of the inverted pendulum falls down.

e As being a basically mechanical system, it fits to the way of thinking
of students of mechanical or transportation engineering.

e The structure of the inverted pendulum device is quite simple, it can
easily be modeled — by applying the most fundamental rules of physics.

e The quality requirements to set up for the controlled system can easily
be expressed on the basis of common sense considerations, e.g. small
deviations of the rod, fast return to the original position at a distur-
bance, indifference to disturbances, etc.

The System and Control Laboratory in collaboration with the Depart-
ment of Control and Transport Automation of the Technical University of
Budapest has built multiple inverted pendulum devices for classroom usage.
The main design criterion has been the simplicity, therefore moving the
cart has been solved with a DC servo motor driven by a power amplifier,
cart position and rod angle measurements have been implemented by using
potmeters (see Fig. 1), i.e. the inverted pendulum is totally analog device.
Direct digital control can be realized by means of a computer complemented
with analog to digital and digital to analog converters. IBM compatible per-
sonal computers can be used based upon Intel processors, preferably 486 or
Pentium ones. Several types of AD/DA cards can be used including e.g.
data acquisition products of National Instruments.

Fig. 1. Schematic diagram of inverted pendulum

The control program — it can be considered as a control environment
— has been developed by the Systems and Control Laboratory. It has been
written on the basis of LabWindows/CVI for Windows™ environment,



AN INVERTED PENDULUM TOOL 11

product of the National Instruments (Austin, TX), which has provided ex-
cellent user interface and means of graphical representation.

The control environment will be described in the Section 2. Then a
brief outline of the modeling issues and the design of a nominal controller
will be given Section 3. Section 4 contains some didactic examples from the
field of the model based control design, providing evidenze for the strength
of the system realized.

2. The Control Environment

The inverted pendulum control environment developed by the authors has
been realized as a Microsoft Windows™ application. The program assumes
some type of AD/DA card — several installable versions are available for
different platforms.

The control environment represents not only a control algorithm, but
consists of several features which supports a higher level control design such
as iterative identification based design schemes.

The basic features of the environment are enumerated as follows.

The control environment provides a discrete real-time direct control
facility with configurable timing characteristics. The control algorithm can
be downloaded to the environment. The downloadable form is a MATLAB
compatible file (namely MAT), which contains the state-space form of any
discrete linear controller, i.e. a series of four matrices, A,xn, Brxn;Caxn
and Djy1, respectively, where n is a user selectable order of the controller.
This form enables the user to design any linear controller he/she wants,
including optimal and robust controllers.

In regular undergraduate education the principles and methods of the
classical control theory are applied, hence the method of pole-placement
and simplified optimal LQ design has been introduced as laboratory experi-
ments. In these schemes the connection between the performance properties
of the designed closed loop system and the methods or design parameters
(values of weighting factors, location of poles, etc.) can be indirectly observ-
able. At graduate level courses the linear quadratic and Gaussian (LQG)
controller design, the Kalman filtering based observer design (ANDERSON
& MOORE, 1989). The higher level courses can deal with the model based
control design, which encloses the identification of the structure and of the
model parameters, as well as the estimation of the plant uncertainties. In
this way students can comprehend the fundamental principles of the robust
(postmodern) control theory (MACIEJOWSKY, 1989). Later in this paper
some examples for model based control design from the graduate course will
be illustrated.

Besides the real-time control the environment contains an inverted
pendulum simulator which is aimed to serve as a preliminary test of the new
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algorithms to avoid damages of the hardware. There is a built-in nonlinear
simulator as well as possibility to download any type of linear simulator of
MATLAB form.

The control environment offers a menu-driven mode to configure the
system for a given inverted pendulum hardware, to test and calibrate the
configuration, as well a gives possibility to look graphically the time-functi-
ons of the significant system variables in history-like manner with config-
urable extent. A sample screen of the environment with an operating sim-
ulation can be seen in Fig. 2.

Beyond the basic ones the control environment provides several ad-
vanced features, these are outlined as follows.

The control environment support identification and iterative control
design schemes. There are two built-in facilities to support them: data
acquisition on the most significant system variables and application of dis-
turbances on them.

Data acquisition is based upon the history mentioned above. The user
~ has the possibility to store a selected part of the history (of course after
a successful operation of the inverted pendulum control) in a MATLAB
compatible form. These records can be used in any identification procedure
implemented in MATLAB.

Fig. 2. A sample screen of the environment

The disturbance facility is also based upon MATLAB. The user can de-
sign several disturbances (deterministic or stochastic signals, e.g. sine wave,
Gaussian noise process, etc.) to be applied on system variables in additive
manner. The disturbances can be downloaded to the control environment,
and assign them to several system variables as well as to switch on or off
depending upon the test experiment to be performed. The environment
also has local capabilities to generate simple disturbances. The use of iden-
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tification and disturbances will be introduced in detail in section 4 of the
paper.

3. Modeling and Control

First step of the control design must be the construction of a nominal model
of the inverted pendulum. In the stated framework this can be a linear
state-space model. The starting point of the model construction can be the
Newtonian laws of mechanics.

Fig. 3. Modeling the inverted pendulum

By applying them on the schematic view of system seen in Fig. 8, we
obtain the nonlinear equations as follows (see for detailed derivation e.g.
(OGATaA, 1990)):

(M + M)# — mlf?sin 6 + mlfcos® = f,
m:'icosﬁ—i-mlé = mgsiné.

~ ~

After applying sinf =2 6, cos§ = 1 for small angles and 62 = 0 for the
uppermost position of the mass m, we obtain linear differential equations,
which with the z; = z, 25 = %, 23 = 9, 24 = 9 selection of the state-
variables can be expressed in the state-space form as follows:

Ty = z3, n o= w1,
. m 1

Ty = "'MQI'B‘l‘Mf; Y2 = Zz3,
j:3 = T4,

) M+m 1

Ty = ———gr3— —f.

Ml Ml
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The input of the model is force f infl
tuted with the input voltage of the DC servo motor (see Fig. 1).

A. SOUMELIDIS et al.

uencing the cart which must be substi-

A modified

form of the equations can be derived by applying the torque/revolution and

torque/current characteristics of t
uct catalogue of MAXON motors (MAXON, 1992, p. 123))

he DC servo motor (see e.g. the prod-

supposed to be

linear ones, as well as the mechanical relations between the rotational and
linear motion. The modified state-space equations can be seen as follows:

[0 1 0 07 0
T3 R (EmKg\? 1 KK
.’i)g - 0 —_ZWm ( Rmr ) _I”Mg 0 T + ]\_l/f Ronr u
g3 | |0 0 0 1]]|=2s 0
T4 e\ 2 T4 1 KmK
R KmK M+m L Amiig
L 0 v il (_I_{;;g_) —M%g 0 | Ml Rpr
1
n _ 1 0 00 T
Y2 o 0010 T3 !
T4

where u is the input voltage of the DC servo, Ry, is the armature resistance,
K, is the torque constant, K is the mechanical attenuation of the rotational
motion, r is the radius of the wheel transforming the rotation into linear
motion. The dynamics of the motor armature, the mechanical uncertainty
of the coupled mechanical elements, as well as any friction is neglected in
this simplified description.

The system represented by the model — as it can easily be shown - is
unstable, however, it is controllable. A bit difficulty occurs in the control
design by the fact that it is not a minimum phase system.

A nominal controller, which can be served as a starting point of apply-
ing any iterative scheme for model based control, can simply be designed on
the basis of optimal linear quadratic control. As the state of the system is
not fully measured a state observer must be established. The design of an
optimal linear quadratic controller can be realized with the procedures of
the Control Toolbox of MATLAB. The output of the MATLAB procedure
is the discretized state-space form of the controller, which can directly be
loaded into the inverted pendulum control environment.

The transfer characteristics of the nominal controller designed on the
basis of the nominal model can be seen in Fig. 4 (step response of the closed
loop). An LQ optimal full state observer has been realized with covari-
ance matrices with diagonal elements (0.01, 0.1,0.05,0.5) for process noise
and (0.01, 0.01) for measurements noise, respectively. The weighting matrix
used for LQ feedback gain computation has also been diagonal with elements
(0.25,0.01,4.0,0.01) and input weighting has been 0.0003. The design pro-
cedure has resulted in quite good closed loop characteristics, sufficiently fast
settling and small deviations around the desired state.
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4. Didactic Examples

The inverted pendulum experiment seems to be an excellent means to illus-
trate and test principles and methods of the postmodern control theory, and
can be served as a good basis for the use in teaching. In this section some
examples will be presented — selected from the field of model based control
- to illustrate the strength of this approach.

While the inverted pendulum is an unstable system so the identification
has to be performed in closed loop, namely applying data collected in closed
loop on the plant while an initialized and known controller operates. The
closed loop identification can be performed on the one hand in classical way
using direct or indirect method (SODERSTROM & STOICA, 1989) and on the
other hand applying modern methods, which take the feedback connection
among signals into account, e.g. two stage method, coprime factorization
method or dual Youla parametrization method (VAN DEN HOF & SCHRAMA,
1994). .
In Fig. 5 the magnitude and phase frequency response of two kinds of
identified transfer function between the motor input voltage and the cart
position are demonstrated. Figures of the left hand side show the result of
the direct method, while figures of the right hand side illustrate the result of
two stage method. The orders of the autoregressive and input cperators are
selected as 4. The solid lines show the plots of the identified model, while
the dashed lines show the theoretical plots. ,

Although this example illustrates an identification of a single-input
single-output (SISO) system in the laboratory experiments there is the
possibility to investigate the identification of the multi-input multi-output
(MIMO) system.

Based on the identified model a state feedback gain matrix and an
estimator (or filter) gain matrix are designed, then the combined linear
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quadratic and Gaussian (LQG) controller is formed. On the left hand side of
Fig. 6 the solid lines represent the magnitude plots of the designed controller
and the dashed lines show the plots of the optimal controller based on the
theoretical model. In the laboratorial experiments there is the possibility
to examine the effect of changing the weighting factors and to compare the
different designed controller in the sense of performance characteristic of the
closed loop system. In this example the dimension of the designed controller
is 12, which can be reduced as follows.

The well known model reduction methods can be applied for controller
reduction, e.g. balanced realization or minimal realization, but those meth-
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Fig. 7. Bode plots of the open loop system

ods can be also used which were developed for controller reduction purpose,
e.g. closed loop balanced reduction, coprime factorization reduction, etc.,
(Liu & ANDERSON, 1990). These latter methods perform the dimension
reduction taking the performance criterion of the closed loop into account.

. In this example the controller reduction has been performed by frequency
weighted balanced truncation method. The order of the reduced controller
is 8. The magnitude plots of the reduced controller can be found on the
right hand side of Fig. 6.

The magnitude plots of the open loop can be seen in Fig. 7. The solid
line represents the designed open loop based on the identified model, while
the dashed line illustrates the nominal open loop. It can be seen, that the
designed frequency functions are close to the nominal functions in the whole
frequency domain.

The following two examples illustrate the behavior of the designed con-
troller in the actual loop. The displacement and the angle of the pendulum
measured in 30 sec time domain can be seen in Fig. 8. In this case addi-
tive extra disturbances of displacement and of the angle are not introduced
to the system. In the last example a reference signal has been introduced

displacement angle

Fig. 8. Examination of LQG controller

for the displacement while the angle is disturbed by a random signal. In
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Fig. 9it can be seen that the output displacement signal slowly follows the
reference signal. Of course, it is possible to investigate other solutions for
reference signal tracking, e.g. the augmentation of the LQG controller by
an integrator term or the solution of a proper prefilter design.

reference displacement

angle

Fig. 9. Examination of reference signal tracking

5. Conclusion

As the didactic examples presented, the inverted pendulum experiment is
suitable to use in teaching — beyond the conventional ones — the more con-
temporary topics of the control science, e.g. robust and model based control.
Laboratory experiments are based upon MATLAB environment and its tool-
boxes, which are well known by most of the undergraduate and graduate
students. The control environment developed by the authors results in a
compact solution to the whole experiment, including hardware handling,
real-time control, identification, and design of control algorithms.
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Abstract

In this work we define Quasi-Recurrent Weyl spaces and examine the hypersurfaces of
them.

Keywords: Weyl spaces, Quasi-Recurrent Weyl Spaces.

1. Introduction .

An n-dimensional manifold W, is said to be a Weyl space if it has a confor-
mal metric tensor g;; and a symmetric connection V; satisfying the com-
patibility condition given by the equation

Vigi; — 2Tkgi; =0, (1)
where Ty denotes a covariant vector field and Vig;; denotes the usual co-

variant derivative.
Under renormalization of the fundamental tensor of the form

gij = Ngij 2)
the complementary vector T} is transformed by the law
Ti=Ti+ 80X, (3)

where A is a function.
Writing (1) out in full, we have

Okgi; — ghs Tl — ginlh — 2Thgi; = 0,

where F};l are the connection coefficients of the form

b= { kz } ~ 6™ (Gmk Tt + gmiTh — griTrm) - (4)
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A quantity A is called a satellite with weight {p} of the tensor g;;, if it
admits a transformation of the form

A=)PA

under the renormalization (2) of the metric tensor g;;.
The prolonged covariant derivative of a satellite A of the tensor g;;
with weight {p} is defined by [1]

VA = ViA—pTiA. (5)

REMARK 1 The prolonged covariant derivative preserves the weight.
The curvature tensor R;kl of the Weyl connection is defined by
. o o . . .
k= 9aF T 52l e Dhel — Tl (6)
and the Ricci tensor R;; of the Weyl connection is

R;; = RT . (7)

ym

Since the Weyl connection is not metric, the Ricci tensor R;; is not necessar-
ily symmetric. In fact, Ri;;) = nVTj. We remark that if 7j is a gradient,
then the space is Riemannian.

It is easy to see that the covariant curvature tensor Ryijk is a satellite
of g;; with weight {2}.

The Bianchi identity for the Weyl space is, by [2]

'O ph > ph e
ViR + ViR + ViR = 0. (8)

ilj

2. Quasi-Recurrent Weyl Spaces

A non-flat Weyl space W, (gi;, Tx) will be called quasi-recurrent ((QRW),,
in short) if the curvature tensor satisfies the following condition for some
non-zero covariant vector field ¢ (# Tk)

VeRisel = 26s Rijrt + GiRsjrt + ¢ Rist + drblijst + Grltijis - (9)
A (QRW),, manifold can be Weyl recurrent, i.e. it can, beside (9), satisfy
VRijnk = &5 Rijhk - (10)

We examine the spaces satisfying (9) but not satisfying (10). Recurrent
Weyl spaces have been examined in [2]. We note that ¢y is a satellite of gi;
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with weight {0}. By multiplying (9) by ¢* and summing up with respect to
v and [ we get

VoRjk = 26, Rk + ¢; Rt + 0 Rjs + ¢i(Rij + i) - (11)
Similarly transvecting (11) by ¢’% we obtain
ViR = 20.R+ (RS + B + Bif + RE), (12)
where R¥ = R,;g* and RE = Rj,g7*.
Hence the scalar curvature of the (QRW), satisfies (12).

By changing the indices 5 and k in (11) and subtracting the resulting
equation from the one obtained therefrom we obtain

2(n+1)

V,Fj = G5 Fik + dxFjs + 0 Fs (13)

where Fjp = Rjjp.
In fact this is the relation between the complementary vector 7% and
the recurrent vector ¢x.

3. Hypersurfaces of Quasi-Recurrent Weyl Spaces

Let W, (g:j, Tx) be a hypersurface, with coordinates wt (4 =1,2;---,n) of
a Weyl space W,y 1(gap, Te) with coordinates z (a = 1,2,---,n+ 1). The
metrics of W, and W, ; are connected by the relations ‘

g = gmels?  (4,5=1,2,--,m; a,b=12,--,n+1), (14)

where z? denotes the covariant derivative of z% with respect to ul.
It is easy to see that the prolonged covariant derivative of a satellite
A, relative to W,, and W, 4, are related by

Vid=2(V, A (k=1,2,---,n; ¢=1,2,---,n+1). (15)

Let n® be the contravariant components of the vector field of W, 43 normal
to W,, which is normalized by the condition

gapn®n® =1. (16)

The moving frame {z%,n,} in W,, reciprocal to the moving frame {z¢,n®}
is defined by the relations

nee? =0, n =0, zfxfl:(Sf (17)
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Remembering that the weight of z¢ is {0}, the prolonged covariant derivative
of x? with respect to u® is found as

Vizd = Viz? = wgn®, (18)

where w;x is the second fundamental form. It can be shown that wy is a
satellite of g;; with weight {1}.

The following two relations, which are respectively the generalization
of Gauss and Mainardi-Codazzi equations, are obtained in [2]

B .db
Ryijk = Qpijrk + RapeeyT 2527 (19)

kaw v, Wik + Rdbcezzm xkn =0, (20)
where Rgsee is the covariant curvature tensor of W,y and ;i is the
Sylvesterian of wij defined by Qpijk = WpjWik — WpkWij-

THEOREM 1 A hypersurface W, of (QRW),4; satisfies the following.
VisRijsi — VsQuimt = 2¢s(Rijut — Qjrt) + ¢i(Rsjrr — Qsjnr) +
+¢i (Riskt — Qskt) + Or(Rijst — Qujst) +
+1(Rijis — Qijks) + RaveaVs(zizizial). (21)

Proof 1 By taking the prolonged covariant derivative of (19) we have
VeRiji = ViQuini + Vs(Rapea) 2820257 + RapeaVs(zie brgaf) .
Moreover,
VeRijn = ViQijn + Ve(Rapea) 22205 0]at + Rapea Vs (zfziaiaf) -
By using (9), Mainardi-Codazzi equations and (15), we obtain the result.

THEOREM 2 A simply connected hypersurface of (QRW),41 is Rieman-
nian.

Proof 2 If we change the indices k, [, s cyclically in (21), we obtain two more
equations. Namely
ViRis — ViSijis = 26.(Rijis — Qujts) + ¢i(Rijis — Qejs) +
+¢; (Rikis — Qukts) + o1 (Rijrs — Qijks) +
+6s(Rijik — Qjik) + Rapea Vi(ztzizfzd) | (22)
ViRijok — ViQujsk = 2¢1(Rijsk — Qijsk) + ¢i(Rijsk — Qujsk) +
+¢; (Ritsk — Quisk) + ¢s(Rijie — Qujix) +
+¢r (Rijst — Qijst) + Rabcdvz(za brozd). (23)
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Adding these three equations and using Mainardi-Codazzi equations and
Bianchi identities, we find

$i(Rijsk + Rijis + Rsjrt) = 0. (24)
Since ¢; # 0 we have
Rijsk + Rijis + Rsjri = 0. (25)
From the first Bianchi identity we get
Bijysk + Birjyis + Bisjyn = 0. (26)

Hence, the result follows from the fact that R i5)sk = 245575 1-
A hypersurface W, of W, ;1 is called totaﬂly geodesic if[ w;; = 0. There-
fore we have the following theorem.

THEOREM 3 If the simply connected hypersurface of (QRW ), 11 is totally
geodesic, then the hypersurface is Riemannian quasi-recurrent.

Proof 8 Follows from (21) and the Theorem 2.
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Abstract

This paper makes known the results of the investigations carried out into the transient
behaviour of closed control loops of a ship propulsion plant. Transient characteristics of
various speed governors as well as their applicability are compared. Comparison is made
on the basis of transient characteristics gained by computer simulation, and represented
in figures.

Keywords: transient characteristics, speed governors, propulsion plant.

1. Introduction

A series of computer simulations has been carried out at our departiment, in
order to gain information on the transient behaviour of a ship’s propulsion
plant in waves.

Closed control loops, containing the following speed governors, have
been compared: :

— a direct acting mechanical one,

— a Pl-type hydraulic one, equipped with a compensating vanishing feed-
back,

— two versions of a two-pulse electronic speed governor, co-operating
with a constant-pressure fuel injection system.

The following characteristics as well as decisive phenomena of the
closed control loops have been calculated and compared: momentary speed
variation, time constants, frequency response, stability, optimum setting of
compensation, influence of the fuel injection system, the effect on the system
. dynamics of the deteriorating conditions of the fuel pumps.
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2. Models of the System Components
2.1. Basic Attributes

The applied mathematical models of the engine and of the speed governors
are linearized and quasi-stationary. The matching point, i. e. the basis of
linearization is defined by 67% fuelling and 90% engine speed, with reference
to the nominal values. In order to gain better-conditioned models, relative
variables are applied, instead of physical characteristics. Having been di-
vided by the matching point value, the change, referring to the matching
point, of a variable yields its relative value.

The investigations have been carried out by means of state-space mod-
els written in MATLAB supported by its own ‘Control Toolbox’.

The excitation function has been considered sinusoidal, deterministic
function of two variables. The wave pattern has been presumed to be regu-
lar. The ship’s advancing has been considered perpendicular to the crests.
In most cases the angular frequency and the relative amplitude of the exci-
tation have been w, = 1.08 [rad/s] and o, = 0.325, respectively.

In the course of our investigations friction forces on the moving parts
of the speed governors as well as that of the fuel injection system have been
assumed to be proportional to the relative velocity of the moving parts,
applying a wide range of ¥ coefficient of proportionality. This approximation
is based upon the vibrations of the lubricated moving parts.

The model accuracy in steady state condition, on the base of the test
bench diagrams of the engine, proved to be sufficient for system dynamics
application, while its correct transient properties have been justified by sea
trials.

2.2. Models of a Supercharged Marine Diesel Engine

A four-stroke, medium-speed, supercharged marine diesel engine 6NVD48A-
2U type of SKL has been chosen, as the physical basis of the mathematical
model. .
Two different state-space models of the engine, for different applica-
tions, have been set up, applying two different methods [1}. The applied
setting-up methods of the state-space models are founded on the transfer
function form of the mathematical model of a supercharged diesel engine
developed by KruTov [2]. The layout and the block diagrams in transfer
function representation of the model are shown in Fig. I and 2, respectively.
According to these figures, « relative displacement of the fuel rack and «,
relative load are the input signals, while ¢ relative speed of the engine is the
output signal of the model. Most of the system components are of first-order
proportional type.
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Fig. 1. Layout of the model of a supercharged diesel engine

2.3. Model of a Direct-acting PT2-type Mechanical Speed Governor

The model is represented by its partial transfer functions connected in par-

allel X .
YLp p— =
s (7) de(p) T2p*+Tip+6,

of ¢ as one of the input signals, and

O (¢S]
Ya - _ g — g
o+ (7) dy(p) T52p2 +Typ+ 6,

(1)

©

of the o, relative tensioﬁing of the flyweight springs considered the second
input signal. The output signal of the model is n relative displacement of
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Fig. 2. Block diagram of the model of a supercharged diesel engine

the flyweight sleeve.
Both transfer functions (1) and (2) are of second-order proportional
type. The state-space model of the governor has been set up on the ba-

sis of the above transfer function representation, by means of converting
commands in MATLAB.

2.4. Model of a PI-type Hydraulic Speed Governor

This model is based upon the WOODWARD UG proportional plus integral
type hydraulic universal speed governor equipped with a vanishing type
compensating feedback.
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Fug. 5. Step response of the controlled variable

According to its layout in transfer function representation (Fig. 3),
¢ and o/ partial relative tensioning of the flyweight springs are the input
signals, while A relative displacement of the servo-piston is the output signal
of the model.

The transfer functions and the input-output signals of the subsystems
in Fig. 8 are as follows:

— The integral type transfer function related to x relative displacement
of the pilot valve, as the input signal of the hydraulic servo-amplifier
unit, is

1
ViinalP) = . G
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The output signal of the subsystem is ), the very output of the model.

- The second-order proportional type partial transfer functions, con-
nected in paralle], of the sensing unit subsystem are

egou

Ye = 4
- gov(p) T;p2+po+5z ( )
of @y as one of the input signals, and
1
Y8, (p) = (5)

CT2p + Typ + 6,

of ¢ considered the second input signal. The output signal of the subsystem
is 0’ partial relative displacement of the flyweight sleeve.
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— The proportional type transfer function of the inner. proportional feed-
back is

Y(p) = O p- (6)

A is the input signal, and o partial relative tensioning of the flyweight
springs is the inner feedback signal, as the output one of the subsystem.

— The first-order derivative type transfer function of the compensating
vanishing feedback

Tor -
T Y
PIP
has X input signal and 7" partial relative displacement of the flyweight sleeve,
where Tp; and u are the time constant and the rate of the compensation,
respectively.
The state-space model of the governor has been developed by simple

conversion in MATLAB. Detailed information on the models of the speed
governors is available in 3], [4].

Y,;(p) = uBpr

2.5. Models of a Two-pulse Bing-bang Type Electronic Speed Governor

The operating method of this governor is supposed to be similar to that of
the mechanical speed governors, operating on two-stroke, low-speed marine
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diesel engines. Thus, value of the controlled propeller speed is maintained
by the governor between upper and lower limits, applying successive cut-out
of injection or successive reduction in amount of the injected fuel.

Two models of this kind were developed, both of them have been writ-
ten in form of M-files in MATLAB, by using logical variables. The only
difference between these models refers to the rate of fuelling during the
cut-out periods, one of them cuts out injection in these periods completely.

Speed governors of this type have been supposed to be co-operating
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with electronically controlled constant-pressure injection systems [5]. Time
lag represented by the applied electro-hydraulic injector valves has been
neglected.

3. Results of the Investigations

3.1. Closed Control Loop, Comprising a Direct-acting PT2-type
Mechanical Speed Governor

Figs /-7 represent the influence of the 9 coefficient of proportionality, i.e.
the effect of the changing condition of the fuel injection system, on
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Fig. 10. Step responses at various pairs of u and Tp;

the Nyquist gain-phase characteristics of the closed control loop (Fig. 4),
the step response of ¢ controlled variable at a, = —1 sudden load
rejection (Fig. 5),

the step response of 7 relative displacement of the flyweight sleeve at
a. = —1 (Fig. 6),

the time history of ¢ and 7 at sinusoidal excitation of wy = 1.08 [rad/s]
angular frequency (Fig. 7).
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Fig. 11. Step responses at various pairs of u and Tpy

Figs 8 and 9 comprise the step response and the time history, at
w, = 1.08 [rad/s] sinusoidal excitation, of p relative boost pressure and @,
relative speed of the supercharger.
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3.2. Closed Control Loop, Comprising a Pl-type Hydraulic Speed Governor

Figs 10-12 represent the influence of the varying u, Tp; pairs on the step-
response (Figs 10 and 11) as well as on the time history at w, = 1.08 [rad/s]
sinusoidal excitation, of controlled variable ¢(Fig. 12).

F1g. 13 shows the time history of A relative displacement of the servo-
piston, at w, = 1.08 [rad/s] sinusoidal excitation.



40 G. PAP

LAMBDA rel. servo-piston displ.

" o1l
=00
[
nuvuwn

(@}
[3 3] =

10
Time,s

Fig. 13. Time history of A at various pairs of u and Tpr

In Fig. 10 curves 2 and 3 relate to stable settings, while curve 1 to an
instable setting of the compensating system. Optimal compensation pro-
vides quick response of the system, without hunting or surging of the prime
mover. In Fig. 11 curve 1 corresponds to an undercompensated, curve 3 to
an overcompensated, while curve 2 to the optimally compensated settings of
the system, whereas all these settings yield stable operation. In Fig. 12 on
the curve 1, likewise on the curve 1in Fig. 13, small wavelets have been su-
perposed to the sine-shaped output signal. This phenomenon demonstrates
hunting of the prime mover due to an undercompensated setting of Tpy

and u.
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Fig. 14. Bode diagram of the open control loop

Ftrg. 14 contains the Bode logarithmic plots of the open control loop.
These plots have been calculated at a stable, as well as at an instable pair
of u and Tpy variables of the compensating vanishing feed back.

Figs 10-14 have been plotted assuming new condition of the fuel in-
Jection system, such as the fuel rack, linkage and the constant-stroke, edge-
controlled fuel pumps.

3.3. Closed Control Loop, Comprising a Two-pulse Bing-bang Type
FElectronic Speed Governor

Figs 15 and 16 represent the time history of ¢ controlled variable and that
of « relative displacement of the fuel rack, at w, = 1.08 [rad/s] sinusoidal
excitation. Pre-set lower s limit has been x = —1 in Fig. 15, while k =
—0.325 in Fig. 16.

Comparing the time history of the ¢ controlled variable in Fig. 15 to
that in Fig. 16, the latter shows better control performance. By applying
smaller gap between the upper and lower fuelling limits result fluctuation
at lower frequency of the ¢ relative engine speed.
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4. Concluding Remarks

On the basis of our investigations the following conclusions can be drawn:

— Applying a direct-acting mechanical speed governor, amplitude ratio

of ¢ controlled variable, at regular sinusoidal waves as an excitation,
is basically determined by the fuel injection system. Assuming dete-
riorated conditions of the fuel rack, linkage and of the fuel pumps,
¢, damping factor of the second-order system, representing the speed
governor, is far from being optimum, even at robust dimensions of the
governor. Application of constant-stroke, edge-controlled fuel pumps
results considerable drawbacks, constant-pressure fuel injection sys-
tems are favourable in this regard. However, on the other hand, this
governor is less influenced by the varying excitation frequency (Figs 4~

Regarding direct-acting mechanical speed governors, at a sudden change
in load, e.g. due to lost propeller, controlled variable probably cannot

be maintained below 120% of its nominal value prescribed as a limit

by the rules of registers, thus application of an independent overspeed

protection is necessary. Applying a governor of this type, influence of

the speed and torque fluctuations due to waves, concerning noise and

vibration, cannot be disregarded (Figs 5 and 6).
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Transient behaviour and stability of a closed control loop, containing
a Pl-type hydraulic speed governor, is highly influenced by the excita-
tion frequency. Optimum setting of v and Tpy is basically frequency
dependent. The momentary speed variation, the length of the tran-
sient process, surging and stability are sharply influenced by the pair
of u and Tpy (Figs 10-16).

Two-pulse speed governors are less sensitive to the excitation fre-
quency and to the deteriorated conditions of the fuelling system. How-
ever, the scope of application for the two-pulse speed governors is lim-
ited by the torsional vibration of the shafting. Their application in
propulsion plants, containing reverse-reduction gears or flexible cou-
plings, is conditional (Figs 15 and 16).

Surging in the angular velocity of the turbo-supercharger impeller
proved to be negligible in this engine category, applying even the less
favourable type of the investigated speed governors at a sudden load
change (Figs 8 and 9).
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Abstract

When designing new vehicles, the reliable prediction of the future operation conditions
of running gears based on quantitative statistics is very important both for the strength
dimensioning and for ensuring the required riding comfort. This study introduces the
analysis of the vertical dynamics of a vehicle under design, based on real-time simulation
using the data of the traction and trailer units of the train and those of the railway line
in question, especially the spectral density function of the vertical track irregularities.
The combined numerical treatment of the train operation process and the vertical vehicle
vibrations, as well as the predicted load statistics are illustrated for the running gear and
suspension system of a four-axle bogie vehicle in suburban traffic.

Keywords: railway vehicle system dynamics, stochastic vibrations, load statistics.

1. Introduction

The loading conditions of a complete railway vehicle and its running gear
are typically of stochastic character, if the regular operation process of the
vehicle is considered in a long time interval [1]. The mentioned stochastic-
ity is caused by the random length of the sequential speed-timing cycles,
by the random effects due to driver’s activity in the tractive and braking
force exertion determining the train motion, as well as by the changing
and in stochastic sequentionality realizing track-resistance forces. On the
other hand, railway vehicles and also the trains are complicated vibratory
systems, so in the operation of running gears one should reckon with dy-
namical excess loads caused by stochastic vibration processes excited by the
irregularities in the track [2,3,4]. In this study the application of the general
real-time loading-state simulation method developed at the Department of
Railway Vehicles of the Technical University of Budapest will be introduced
to determine the future vertical load statistics of a vehicle being designed
for operation under given train track and time schedule conditions. When

1This research was supported by the Hungarian Ministry of Culture and Education,
Grant No. 82/94
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applying the simulation method, the train should be led along the specified
railway line(s), by giving appropriate controls from the computer keyboard.
In the course of the train motion simulation the time functions of the vertical
track irregularities belonging to each wheelset are determined, based on the
known spectral density function(s) of the irregularities. The mentioned time
functions are used as excitation functions of the vertical in-plane dynamical
model of the vehicle considered. The set of equations of the model is solved
numerically and the statistics of the motion and force processes realizing in
the connection elements of the model are determined. The load statistics
ensure exact predictions for the operational and strength dimensioning of
the running and suspension gear components.

Curved sect.
R=500m
Straight Straight

Fig. 1. Side and top views of the lumped parameter train model on the track

2. Real Time Simulation of the Train Motion

For the simulation of the train motion the complex longitudinal dynamical
model and the program system described in [4] were used. This longitudinal
dynamical model takes into consideration one loco at the front end of the
train and maximum 30 cars. In the train model the vehicles are represented
by lumped masses as it is indicated for a train in Fig. 1.

To specify the model, the geometrical and vertical characteristics of
the vehicles, as well as the longitudinal stiffness and damping values of the
intervehicle connections should be fixed, see Fug. 2.
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Fig. 2. The train as a longitudinal vibratory system
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Also the coefficients of the specific basic traction resistances, the brake
cylinder diameters, the mechanical advantages of the brake rigging, as well
as the velocity and brake-block pressure dependent friction coefficients of
the friction wheel brake should be specified for each vehicle in the train.
The adhesion limit is considered as a velocity independent constant. The
tractive-effort performance curves of the traction unit should be specified
as a bivariate function of the velocity and the drive control. The maxi-
mum number of the tractive-effort control positions is 15, and the same is
the number of the loco driver’s brake valve handle positions. The railway
track is specified by two track arc-length dependent piecewise linear func-
tions, namely by the inclination conditions and the curvature conditions.
The track inclination conditions are characterized by the mille values. In
case of constant inclination angles the mille values are also constants, while
in case of the vertical rounding circles the variation of the mille values is
approximated by a linear law (see Fig. 3).

The curvature conditions are characterized by the numerical values of
the track curvatures, see Fig. 4.

In straight sections the curvature takes zero values, in circular sections
it takes constant values, while in transition curves it is a linear function of
the arc length, reflecting the clotoid geometry.

By using appropriate integer valued u;(t) < 0 drive, and uy(t) < 0
brake controls given from the computer keyboard and the real-time numer-
ical solution of the equations of motion of the train model, the train can
be led along the railway line (or lines) specified by the customer railway
company. A typical control function pair is shown in Fig. 5.

The partition of the set of keyboard positions for initiation the required
brake and drive control integers is shown in Fig. 6.

Thus, the speed — timing diagram v = f(t), or the speed — distance
covered diagram v = f(z) can be determined using an integration time
step of length 0.01 s for each vehicle in the train. For example a set of
time-dependent diagrams appearing on the computer screen is visualized
in Fig. 7.
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Fig. 7. Graphical and numerical information appearing on the screen

Similarly, the distances covered by the gravity points of the wheelsets
become known for any vehicle in the train, also on a time sequence of pace
0.01 s.

3. Generation of Track Irregularities

The vertical irregularities of the railway track are approximated by the re-
alization of a track length parameter weakly stationary stochastic process.
It can be assumed that the spectral density function globally characterizing
the vertical irregularities of the railway line has been specified by the cus-
tomer railway company. It is known [1,2,3], that the realization function of
a weakly stationary track irregularity process u(z) having spectral density
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function S(Q) can be obtained in the following form:

u(z) = co + Z 2¢r cos(Qz + Vi) -

k
In the formula, Qo, 4, ..., Qx stand for the given spatial angular frequency
points, at which spectral density ordinates S(Qo),S(Q1),...,S(0n) are
specified. Sequence cg, ¢y, - .., cn, consists of normally distributed indepen-

dent random variables of zero exzpectation and prescribed variances:
o (ck) = S(Q)AQ, k=0,1,2,...,N

Here AQ stands for the distance between the midpoints of the partition
intervals generated by points Q. Sequence {¢}} consists of independent
random phase-angles, uniformly distributed over [—m, 7). In the simulation
procedure the required random variables are represented by properly gener-
ated pseudo-random numbers.
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Fig. 8. Two-sided spectral density function of the vertical track irregularities
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In Fig. 8 the spectral density function of a weakly maintained track is
shown, while in Fig. 9 the realization function generated on the basis of the
spectral density introduced is visualized.
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Fig. 9. Realization function of vertical track irregularities generated from spectral
density function shown in Fig. &
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Fig. 10. Lumped parameter vertical in-plane dynamical model of the vehicle

In this way the track irregularities under each wheelset of the vehicle can be
computed for each time step of pace 0.01 s when the train passes through
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Fig. 11. Time history of the carbody acceleration belonging to the velocity - timing
diagram shown in the lower part

a line section. The continuous vertical track irregularity excitation function
uq(t), ua(t), - - ., ua(t) can be obtained for the analysis of the vertical dynam-
ics of the vehicle by using C spline interpolation on the discrete (sampled)
track irregularity values obtained from the simulation of the train motion.

4. Simulation of the Forced Vertical Vibrations of the Railway
Vehicle

For the simplified analysis of the excited stochastic vertical vibrations of
traditional four-axle railway vehicles a dynamical model of 10 degrees of
freedom was constructed. As free coordinates the vertical displacement of
the vehicle body, the bogies and the wheelsets, as well as the pitching angular
displacements of the vehicle body and bogies were selected (see Fig. 10).
The time-dependent excitation effect of the vertical track irregularities
is represented by vertical displacement excitations uj(t), ug(t), -us(t), ua(t)
prescribed for the wheel treads. The set of motion equations describing the
vertical and pitching vibrations are treated in the framework of the state-
space method. The resulted first order set of differential equations is solved
numerically in the time domain. In Fig. 11 the vertical acceleration function
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Fig. 12. Time history of the dynamic axle loads in the rubber sprung wheelsets

of the carbody gravity point is shown belonging to the irregularity function
in Fig. 9, together with the speed — timing diagram characterizing the actual
train motion considered.

The solution functions received for the velocities and displacements of
the bodies in the model are substituted into formulae determining the con-
nection forces arising in the linkages in the running gear and the suspension
system. The time history of the vertical forces arising in the rubber-sprung
wheelsets between the hubs and the sprung rings of the wheels is represented
in Fig. 12.

In Fig. 14 the time history of the vertical forces transmitted by the
secondary suspension system is shown.

In Fig. 13 the time history of the vertical forces transmitted by the
primary pension system is visualized.

Based on the latter force - time functions the predicted load statistics
of the running gear and the suspension system can be determined.
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5. Load Statistics .

The operation-loading conditions are characterized by means of probability
distribution approximating relative frequency histograms evaluated from the
time history functions mentioned. The software elaborated for the automatic
evaluation makes it possible either to illustrate on the screen, or to make
printed documents. Also the mean values and empirical standard devia-
tions are determined ensuring a proper description of the predicted future
motion and loading conditions. The Gaussian probability density functions
- generated on the basis of the arithmetical mean and the empirical standard
deviation computed from the time histories are included in the diagrams to
ensure a preliminary (visual) normality test.

In Fig. 5 the relative frequency density histogram belonging to the
computer-generated track irregularities plotted in Fig. §1is shown.

In Fig. 16 the relative frequency density histograms of the vertical
accelerations of the carbody over the front and rear king-pin linkages are
plotted. The two diagrams are constructed by taking into consideration the
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time history of the vertical acceleration of the carbody’s gravity point and
also the angular acceleration of the pitching vibrations of the carbody.

In Fig. 17 the four relative frequency density histograms of the ver-

tical axle loads transmitted through the rubber springs (and the parallely
connected viscous dampers representing the internal energy dissipation in
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the rubber springs) built into the wheelsets are shown.
In Fig. 18 the four relative frequency density histograms of the vertical
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forces transmitted through the primary suspension elements are plotted.
In Fig. 19 the two relative frequency density histograms of the vertical
forces transmitted through the secondary suspension elements are shown.
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Of course, further statistical characteristics, such as correlation func-

tions, spectral densities, etc. of the load process can be determined.

6. Conclusions

e The elaborated simulation method makes it possible to analyze the
dynamic loading conditions realizing in the components of the running
and suspension gears of a railway vehicle planned for a specified railway
line (railway network) already in the period of designing.

e The basic condition of the application of the method is to have accu-
rate data about the inclination and curvature conditions of the railway
line considered, and about the lengths of the transition curves and the
radii of the circulabr arcs interconnecting the adjacent inclined sec-
tions in the vertical plane.

e It is also necessary to know the spectral density function globally char-
acterizing the stochastic irregularities of the railway track in the frame-
work of a weakly stationary model or the spectral density functions
belonging to the individual sections of the track.

e The computation procedure gives the elastic and dissipative forces
arising in the structural connections of the running and suspension
gears ensuring a solid basis for the exact stress dimensioning by taking
into account the expected loading conditions on the railway line or
network considered.

e The elaborated computation method makes it possible to optimize the
system parameters of a vehicle planned for operation on a given rail-
way line or network by maximizing the objective functions formulated
for the running comfort and safety under appropriate constraint con-
ditions.
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Abstract

The tooth tip relief, as an intended departure from the normal involute profile is a common
technics for the improvement of tooth contact characteristics. It is often used not only
for avoiding tip contact, but especially in the case of long relief, to aim at better dynamic
behaviour. For studying the dynamic characteristics of gear trains in the case of long
relief, comparative computer simulations were carried out for a train with normal toothing
and with tooth tip relief. The applied dynamical model and excitation characteristics
are discussed. By simulating smooth acceleration processes at different nominal load
conditions, resonance curves are generated and analysed in the case of ideal tooth geometry
under real mesh conditions, i.e. the mesh irregularities at the beginning and points of
contact, due to tooth deflections were taken into account. Dynamic behaviour at low
specific load level is studied based on steady state rolling down simulations and resonance
characteristics are discussed. »

Keywords: gear train, tooth tip relief, gear dynamics, non-linear vibration, simulation.

1. Introduction

The vehicle transmissions in operation are subjected in general to randomly
variable load conditions, characterised by considerable variations even in the
load amplitude and in the frequency range. Tooth profile modifications in
height direction, as the long tooth relief, see for example in [1], [2], which
can improve considerably the tooth dynamic behaviour in a relatively nar-
row load range, are often used in vehicle transmissions, too. However, the
operating load range is normally broader than the region, where the effect
of the relief is optimum. Consequently, special care must be taken for the
correct choice of the tip relief values and their height.

On Fig. 1, four successive positions of the same profile pair are shown
on the pressure line for teeth with long relief. The points A and F are
the beginning and end points of contact with normal profiles and AD =
BE = KA;y = AuM = py. Point Aj; is the beginning, Aj; is the end point
of contact of the normal involute profile of gears 1 (upper) and 2, on the
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diameters dj; o respectively, pp is the pitch on the base circle. The upper
profile sections with thin line are the eliminated involute sections, C,q 2 are
the relief values, respectively.

Considering the pinion and wheel in positions belonging to the normal
profile, there is no contact in position at point A, because of the tip relief
on wheel 1, but the foregoing profile pair at point D is in normal contact.
In contact position at point K, the foregoing profile pair leaves just the
contact, consequently on KA, contact is only possible by rotating back
gear 1. At position in point A, the original profiles are in contact, as for
the gears with normal profile and that remains up to the position in point
Ajp. Passing Aj; because of the relief on gear 2, contact is possible only
with rotating back gear 1, being the succeeding profile pair in the interval
K A;;. In contact at point M, the succeeding profile pair enters in normal
contact. So, on intervals KA;; and A2 M, contact is possible only with lag
of the gear behind its nominal position. In other words, the contact ratio is
less than one, introducing kinematic excitation.

Fig. 1. Tooth contact on the pressure line for teeth with tip relief
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2. The Dynamic Model
2.1. The Kinematic Ezxcitation

For the simulation study a two mass system model is applied, with rotating
masses, coupled by a spring system, as it is schematically represented on
Fig. 2. The details of the spring system, replacing the real tooth contact,
are described in detail in [3].

In the system on Fig. 2, the cam symbolises the resultant kinematic
ezcitation, introduced by the tooth pairs, being in contact at a given contact
point. The kinematic excitation is introduced by mesh irregularities due to
the tooth deformations on one side, and profile relief and manufacturing
errors on the other side. Consequently, for gears with ideal geometry the
period of the kinematic excitation Q = 27 /z;, where z; is the number of
teeth of the pinion. For gears with manufacturing errors, 2 is the total
rotation angle of the driver, rolling down during the realisation of all possible
combinations of the profile pairs of the driver and the driven gear.

The description of the kinematic excitation can be conveniently han-
dled by the contact function, §;(¢1) see e.g. in [3], [4] which gives the travel
error of the driven gear, measured in length on the pressure line, at any
driver angular position ¢;. The subscript j refers to the jth tooth profile
pair combination.

Fig. 3a shows a series of contact functions for ideal normal gears,
whilst on Fig. 3b contact functions for profiles with tip relief are represented.
The curved parts at the 4 and F points symbolise the errors involved by
mesh irregularities at entering into and leaving the contact. Taking into
consideration the contact process on the pressure line discussed in Fig. I
and the fact that for profiles with long relief £, < 1, the §(¢p1) resultant
contact function has triangular shaped parts, where its value is not zero, see
Fig. 3b.

2.2. Basic Dynamic Behaviour
The differential equations for the two mass system in Fig. 2 are:

J1 (,91 + {Z I{j (AO’ — (SJ((P])) } b1 +T‘b1 §(Q01,AO') . AU:Tl,

J=1
Jo ot Z K; (AO" — Sj(gol)> } Tho + o2 - (13 Ao) - Ao = =T5, (1)
j=1

where ¢392, ¢1,2, 1,2, are the twist angles of the masses and their time
derivatives, K is the damping coefficient in the single tooth pair contact.
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7 \TZ
"bz- ' /

Fig. 2. Schematic two mass model. (J; 2 moments of inertia of the rotating masses,
z1 » number of teeth, T} » outer torques, ¢1,2 twist angles, rp12 base circle
radii, s(s1) tooth contact stiffness function, Fiv resultant contact force on
the pressure line, F, and Fp are the elastic and damping forces in contact,
K damping coefficient.)

Ao = wj + §; is the instantaneous travel error, composed from the w;
tooth deflection and §; contact function value for the tooth flanks actually
in mesh, and 5(¢1;Ac) is the reduced stiffness function [4]. This latter
multiplied with Ao gives the actual elastic force, acting in the mesh. The
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Fig. 3. "Contact functions for ideal profiles (a) and with tip relief (b)

reduced stiffness function contains all excitation components, so it can be
considered as the parametric excitation term in the system.

In general case, the reduced stiffness function can be written as the
sum of its Fourier components Cy, with the Cy average value as follows:

5(p1;A0) = Co(Ao) + Z Ck(Ac) - cos (ﬁﬂ- ko + Vk) ’ (2)
k=1

where €2 is the basic angular period of the reduced stiffness function, & is
the ordering number of the Fourier components, and v; the phase angle.

One can distinguish the $(¢1; Ao) stiffness function, which is the sum
of single tooth pair stiffnesses being actually in contact; consequently it
differs from the reduced stiffness function. The integral mean value (average)
of the stiffness function is called as gear engagement spring stiffness c,.
In the case of linear single tooth pair stiffness characteristic (i.e. force-
deflection curve at a given contact position) at each contact point and ideal
tooth geometry, its value is approximately constant. However, in the case
of toothing with tip relief or with manufacturing errors or/and with non-
linear single tooth pair stiffness characteristic , its value is load (i.e. Ao)
dependent and will be marked as ¢&,.

The system of Fg. (1) with the excitation term (2) describes a rheo-
nonlinear type vibration [5].

The basic vibration properties of such type of vibrations for one mass
system with harmonic excitation can be studied by applying the stability
chart, see ex. [5].
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Assuming ideal tooth geometry, without manufacturing error, the tooth
frequency f, = z1-ny = 21-w1 /27, o1 = wy -t, where w; and n; are the input
angular frequency and rotation speed, respectively, the period of the excita-
tion Q = 27/z; and the tooth angular frequency w, = 21 -wy, being the basic

excitation angular frequency. The system eigenfrequency, ws = 1/c,/m, see

ex. [5], [2] where m is the reduced mass of the one-mass system. As it is
known from the stability chart, unstable, or resonance points develop, if

w? v\?
—§:<§> , v=1,2, ...,00. (3)

Rearranging Eq. (3), unstable vibration develops, if the excitation frequency,
w, = 2ws/v. Fig. 4 shows schematically the resonance curve for such a
system with damping, on the tooth angular frequency with the vibration
amplitude ratio Admax/Aosq: on the vertical axis.

| 26 \
ABGstat, !

1ZMW

OO1—->

u)s/s u)s/3 @/2 23w, Ws ! 2ws
0765 4 3 V= 7 1

4t (]
LILELI 4

w13 2 2B N—=>=1 2

Fig. 4. Schematic resonance curve

Considering a complex excitation function with harmonic components
of k=1,2,...,00, the angular frequency of the k-th harmonic components
will be w, - k. Replacing this value in Eq. (3) as excitation frequency, rear-
ranging the equation and introducing w, (l/(k)>, as the tooth frequency at
which the v-th order resonance point of the kth order harmonic excitation
component develops, one can write:

2w;
wz(u(k)):kcj)l/, k=1,2, ..., oo, v=1,2, ..., 00 (4
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From FEq. (4), the following can be concluded:

— since k > 1, v > 1, unstable points develop only at excitation frequen-
cies equal to or less than 2w,

- since k and v are whole numbers, their product will be whole, and in
turn, all whole numbers can be produced as the product of two whole
numbers, consequently each whole number can serve as divisor,

— one can find unstable point at each excitation frequency which is 2wy
divided with a whole number,

~ for all ¥(Mk > 1, v > 1 with k- v =const., the resonance points are at
the same excitation frequency.

However, in the presence of damping, as it is in practice, the higher
order unstable points tend to lose of importance.

In the gearing technics, a dimensionless frequency ratio number N is
introduced [2], for the marking of the different resonance points, as follows:

z . 2
N:w_:ZI wl:—, 1/2172,...,00, (5)

Ws Ws v

so unstable resonance points can develop at N = 2, 1, 2/3, 1/2, .... The
resonance at IV = 1 is called as main resonance point. For cases, in which
the average stiffness ¢, is load dependent, the frequency ratio depends on

the load, too, so in that case the symbol N will be applied.

3. System Behaviour of Gear Trains with Normal Toothing

For studying the system behaviour, an electric locomotive main drive train
is applied, with the following basic parameters: z; = 53, 2o = 65, m = 12.
The pinion and gear are constructed as hub, web and rim, which involves a
decrease of the theoretical tooth stiffness, see ex. [6]. Two stiffness variants
were applied, one with the theoretical stiffnesses by Weber — Banaschek
[2] with linear single tooth pair stiffness function characteristic, coded as
WBIin, and the other with taking into consideration the rim influence by [6]
and with non-linear single tooth pair stiffness characteristic by [7], coded as
WBHKp.

For characterising the system behaviour, continuous rolling down pro-
cesses by smooth acceleration were simulated and the tooth contact force
dynamic factor Vg was calculated:

Zn: En,(p1)
=1 b

Ve = mgx{VE(wl)} ;o Vele) = Py
b
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Fig. 5. Stiffness s(¢1; Ac) and reduced stiffness 5(¢1; Ac) functions for ideal, nor-
mal tooth profiles

where Fy /b is the total nominal specific load in contact, (due to the nominal
outer load), Fy, /b is the real, dynamical load on the jth profile pair, n being
the number of teeth in contact, and 7 is the rotational angle of the pinion,
corresponding to one tooth mesh.

On Fig. 5 stiffness and reduced stiffness functions are shown, with
the corresponding contact functions for gear train with normal profile. Ex-
pressed load dependence is caused by the mesh irregularities and the begin-
ning and end points of contact due to the elastic tooth deflections and by the
non-linear single tooth pair stiffness characteristic [7], coded as WBHKp.

Fig. 6 represents the resonance curves for different specific load values.
On Fig. 6a, small damping coeflicient is applied with backlash A, allowing
the development of the resonance points. For N =1, 1/2, 1/3 and 1/4 the
tooth flanks separate (where Vg = 0), and non-linear resonance develops.
That is why their location is slightly lower as it is previewed by the marked N
values. On Fig. 6b, ¢, d normal damping is applied for case WBIin, resulting
considerably lower load elevations in the resonance points. However, at
N =1and 1/2, and at low specific load value, tooth flank separation occurs,
involving the decrease of the resonance pick location.
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Fig. 6. Resonance curves in the case of ideal, normal tooth profiles

At higher loads regular resonance locations develop, without tooth
flank separation. One can state that, at increasing load, the dynamic forces
tend to decrease slightly, in agreement with experimental results. The gen-
eral vibration shape changes only slightly.

On Fig. 6e, f the same system is represented, with lower single tooth



68 J. MARIALIGETI

stiffness values and non-linear single tooth pair stiffness characteristic by
Fig. 5. The general vibration shape remains similar, however, the resonance
points move towards the lower input speeds. The reason of that is the smaller
average stiffness. The difference between the theoretical N location and the
real one can be explained by the fact that the beginning part of the single
tooth pair stiffness function is progressive, with lower stiffnesses [7] and this
is not taken into consideration in the calculation of N, determined with c,.
Since the single tooth pair stiffness characteristics at fixed contact positions
are not linear, expressed load dependence can be found on the resonance
curves, see Fig. 6e and f.

Considering the curves on Fig. 6, in the case of linear single tooth
pair stiffness characteristic, slight load dependence of the vibration shape
and slight dynamic factor variation presents itself at different nominal loads,
which is the result of the mesh irregularities at the points A, i.e. entering
into, and E, i.e. leaving the contact of a given profile pair. For non-linear
single tooth pair stiffness function, differences can be found even for vibra-
tion shape and dynamic factors.

4. System Behaviour of Gear Trains with Profile Relief

4.1. Contact Properties in the Case of Profiles with Tip Relief

In the case of tip relief, the number of tooth pairs in contact varies not only
in the function of contact position, but it depends on the applied load as
well. Let us consider the contact applying the contact functions, Fig. 7.

9y 50 s,“(cp)
yAY'A

AN
A61\/ \/ \ y

E)'ZAJ Ej-1Aj+1 EjAijs2 ﬁ

Fig. 7. Contact analysis based on contact functions

Assuming a given travel error due to a given load Ao, =const. and
Ao, > Aoy, one can detect the number of teeth in contact at any position
1. At @} eg. Aoy > 6;(¢}), so the profile pair j is already in con-
tact and profile pair j + 1 did not enter into contact, whilst at Aog, being
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Acy > 6;(p7), Aoy > &;41(¢F), both are in contact. The contact ratio,
interpreted on geometrical bases, is not applicable for the following of this
phenomenon. However, introducing the real, load dependent contact ratio
g¢, by the following definition:

e(Ac) = éZ / Idpy > 1, (7)

=13

where & is an arbitrary angular interval on ¢, and /; is an indicator func-
tion:
o Agy = | 1 Ao >65(e),
Ii(pr1; Ao) = { 0 if Ao <6;(p1), (8)

one can calculate the average number of teeth, being in contact at any Ao,
l.e. at any load, Fiv/b.

- 4.2. FEzcitation Properties

Since the contact conditions for profile with tip relief are load dependent, it
is straightforward, that stiffness functions and reduced stiffness functions,
the latter being responsible for the excitation, are load dependent, too.
Fig. 8 represents the stiffness and reduced stiffness functions, s(¢;; Ac) and
8(ip1; Ao), respectively, for the case of non-linear single tooth pair stiffness
characteristic, WBHKp. For case of WBIin, the curve shapes are similar.

The main Fourier components C} = C/Cj of the excitation functions
on Fig. 9 reflect its strong variation. (The continuous lines are applied only
for the sake of the better visualisation.)

4.3. Resonance Curves

Fig. 11 represents the resonance curves for profiles with tip relief in the case
of two different single tooth pair stiffness characteristics. One can detect the
strong nonlinear behaviour as the nominal load varies and the important
differences related to the resonance curves on Fig. 6, for normal profiles.
The general shape of the curves is similar for both stiffness cases, however,
the dynamic load values at individual operation points differ considerably.

Especially for the linear single tooth pair stiffness characteristic case,
at specific load Fy/b = 200 N/mm and lower, the tooth flanks separate
practically on the whole region. In both cases, the main resonance regions
are displaced towards the lower input speed values. At small load levels, the
unstable regions belonging to different N or N values do not separate in a
clear manner.
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Fig. 8. Stiffness s(i1; Ac) and reduced stiffness 5(¢1; Ac) functions for ideal tooth
with tip relief

Fig. 10 shows the variation of the load dependent gear engagement
spring stiffness values ¢, and the variation of the real contact ratio ;. The

N values on Fig. 11 are calculated with these ¢, values, showing strong
variations as the load varies.

On the resonance curves of WBlin, two different non-linear resonance
characters can be detected. At specific load levels of Fy/b = 50, 100,
200 N/mm, the unstable regions are of nonlinear softening type. As namely
the vibration amplitudes increase, the length of the angular intervals with-
out contact (tooth flank separation) increase, too, consequently the average
stiffness of the system which develops during the vibration decreases. In
spite of that, the main resonance region at Fy /b = 350 N/mm, one can
find a non-linear resonance of hardening type. In that case, the increasing
vibration amplitudes arrive in greater stiffness regions, and fall down after.
In other unstable regions normal curve shapes develop.
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With increasing specific loads Fy /b, the vibrations, i.e. the dynamic
force elevations tend to smooth, and optimum region can be identified at
about Fiy/b =700 N/mm for WBIlin, and Fx /b= 500 N/mm for WBHKp.
These values are in good agreement with the location of the optimum found
with quasi static rolling down [4]. At higher specific loads, only the main
resonance at N = 1 becomes important, on other regions the vibrations
remain reduced.

Comparing this behaviour to that with normal toothing, important
differences can be stated. At lower specific loads, the dynamic behaviour
of gears with relief is strongly unfavourable, whilst at higher loads, optimal
load interval can be found.

As consequence, one can resume that the dynamic behaviour of gears
with long tooth tip relief differs considerably from that with normal one.
Strong non-linear behaviour develops and optimum region can be identified.
The influence of the single tooth pair stiffness characteristic has important
influence on the dynamic behaviour and the location of the optimal region.
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Fig. 10. Variation of real contact ratio and gear engagement stiffness in the func-
tion of the specific load

5. Analysis of the Vibrations at Lower Specific Load Values

As the resonance curves in Fig. 11 at lower specific load levels indicate, the
individual resonance regions fall together, resulting quite important dynamic
factors and tooth flank separations on important input seed interval. For
the more detailed analysis of these vibrations, real tooth load functions were
generated, permitting the study of the contact conditions on the teeth. At
some constant input speed value, continuous rolling down was simulated at
Joad level Fy/b = 50 N/mm and tooth contact force dynamic factors by
Eg. (6), and single tooth force dynamic factors Ve(p1) = (Fn;/b)/(Fn/b)
for the individual tooth pairs were generated. On Fig. 12 at each input
speed, the upper curve is the total contact force dynamic factor variation
during engagement and the curves below are the contact force dynamic
factor variations for the single tooth pairs. In some cases only one tooth
pair contact develops, consequently one curve is sufficient. The marking on
the upper diagrams corresponds to the pitch points.

In all cases, the length of the represented angular interval ¢, is equal
to the real vibration period.

Based on the curves WBIin, the following can be concluded:

— at n; = 180/min, the period of the response vibration is the triple of
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Fig. 12. Contact force and single tooth force dynamic factors at given constant
input speeds, for two different single tooth pair stiffness values
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the period of the excitation (being equal to the period of one pitch
length) and limited tooth flank separation zones develop,

— at n; = 320/min, one can find a double period response vibration,
with important tooth flank separation zones,

— at n; = 600/min, the period of the vibration equals the period of the
excitation and there is only one tooth pair contact, around the pitch
circle, so the length of angular intervals with zero force (tooth flank
separation) are important,

- atny = 900, 1200/min, the basic vibration shape remains similar, with
increasing one tooth pair contact zones.

For the non-linear single tooth pair stiffness case, WBHKp, similar re-
sponse vibrations are found, however, the contact force elevations are con-
siderably reduced.

As it was seen on resonance curves of Fig. 11 at low load level, the
real unstable regions displace to smaller speeds and do not correspond of
the theoretical N values. The reason of that is the development of the
tooth flank separations on more or less long angular intervals, leading to
the softening of the system, i.e. with ’contact intervals’ without contact, so
with zero stiffness.

Based on the contact force functions on Fig. 12, one can identify the
real stiffness values of the system at each contact point, with zero stiffness
on the zero load intervals. Determining the integral mean on one vibration
period of the ’realised stiffness function’, one can find a more softer system,
as it should be without tooth flank separations, i.e. with tooth contact
during the whole vibration.

Table 1 contains for the two stiffness cases at the given speeds, the 'real’
gear engagement stiffness ¢/, and the input speeds 7/, which introduces the
excitation involving the main resonance, i.e. the resonance to N = 1.

Table 1. Tooth engagement spring stiffness values and input speeds to N =1

WBIlin WBHKp
- , i, 7, i,
[1/min] | [N/mm -pmm] | [1/min] | [N/mm -pmm] | [1/min]
180 11.54 866 8.24 702
310 - - 5.87 593
320 8.84 727 - -
600 5.04727 949.4 - -
900 8.84 727 4.19 500
1100 - - 7.17 655
1200 11.7 837 - -
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Fig. 13 represents the excitation frequency values corresponding to
the resonance at N = 1, expressed in input speed 7, in the function of
the input speed n;. On the diagram, there are marked the different vth
order resonances to different kth order Fourier components of the excita-
tion function, which fall together, see chapter 2.2., Egs (3), (4), (5). The
thin line is the line, where n}, = ny . The intersection of this latter with
the curves indicates the input speeds, which are just the speeds, involving
excitation frequencies to the main resonance, at N = 1. This permits us to
identify approximately the resonance order of the different peak values on

the resonance curves, i.e. which N value can be attributed to them.
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F1g. 13. Resonance frequencies expressed in pinion speed versus pinion speed

Based on Fig. 13 and the resonance curves on Fig. 11, Fy/b =
50 N/mm, the following can be concluded, for the case WBIlin:

- at input speed interval 180/min < n; <320/min the resonances corre-

sponding to N = 1/4, 1/3 develop,
~ on interval 320/min < n; <600/min the resonances at N = 1/2, 1 are

overrun, but the two unstable regions do not separate,
- at speeds ny >600/min the system is in overcritical region, and the

resonance at n; = 1450/min is the overcritical one, with (1) = 1.
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Similar conclusion can be drawn for the case WBHKp.

6. Conclusions

The simulation results of gear trains with normal involute profiles and with
toothing with tooth tip relief presented in this paper have shown that even
in the case of ideal tooth geometry, but with considering real mesh, i.e.
taken into consideration of mesh irregularities due to tooth deflections at
the beginning and end points of contact, non-linear system behaviour itself,
as a result of kinematic excitation. In the case of profiles with tip relief,
strong load dependent behaviour was found, with important vibrations at
low load levels and tooth flank separations on broad speed intervals. The
analysis of the vibrations at low load levels has shown that resonance regions
move to lower input speeds and more resonance regions fall together. The
results have shown that the single tooth pair stiffness characteristics have
important effect on vibration characteristics.

In case of complex gear train dynamic simulations, the real tooth ge-
ometry parameters and mesh conditions, as components of the kinematic
excitation, and real single tooth pair spring stiffness characteristics are to
apply, for arriving to more realistic system response results.
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Abstract

The modal analysis can only be applied for the analysis of linear systems with constant co-
efficients. Several objects could be practically described by a linear multidegree of freedom
mechanical system if there would not be present local, frequently strong nonlinearities. Is
it possible to describe the system in the reduced modal subspace if it contains nonlinear
elements and if yes how is it?

Keywords: nonlinear system, modal analysis, modal reduction, base system, impact study,
loading machine.

1. Introduction

The modal analysis means the investigation of dynamic systems with the
aid of modal co-ordinates. These co-ordinates form the so-called modal
subspace. In this space the set of the equations which describes the motion
of the system is a set of linearly independent equations. It means that the
investigated mechanical object can be assembled from subsystems, i.e. can
be synthesised (modal synthesis). The advantage describing the system with
the aid of modal co-ordinates is just in this! The motion of a multidegree of
freedom system can be approached within a prescribed tolerance with the
aid of some well-selected modal co-ordinates (modal reduction).

However, the modal analysis can only be applied for the analysis of
linear systems with constant coefficients (time invariant systems). The lin-
earity is necessary for the applicability of the principle of superposition,
while time invariancy is the condition for the interpretability of the eigen-
problem. ,

On the field of transportation we can find several objects which could
be practically described by a linear multidegree of freedom mechanical sys-
tem if there would not be present local, frequently strong nonlinearities. In
this way, e.g. at the investigation of a loading machine there is the strongly
nonlinear buffer (Fig. 2). In the case of a vehicle moving on a poor road to
take into account the jumping of the wheel requires the investigation of a
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nonlinear system. At the same time the shock absorbers are modeled with
their nonlinearities (Fig. I).

Fug. 1. Vehicle model with elastic body

AN NN o0 0

wn

— 0 W

Fig. 2. Model of the loading machine

N

It asks for a vote of confidence: is it possible to describe the system in
the reduced modal subspace if it contains nonlinear elements and if yes how
is it? As an example we shall investigate the impact of a loading machine.
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2. Theoretical Considerations

The response function of a nonlinear system is practically always produced
by numerical integration. The solver subroutines for differential equations
approach the values at the time T + At on the basis of finite differences.
It means that at the time 7" we have a differential equation with constant
coeflicients. For this equation the modal condensation is applicable.

It is enough to know the modal co-ordinates of only one linear system
as a base system. This base system is possible to be arbitrary, but by the
experiences it is advantageous to choose a quasi-equivalent linear system to
the nonlinear system. We transform the mathematical model of the object
that the nonlinear force functions contain only the nonlinear differences with
respect to the base system and they present on the right hand side of the
equation as force excitation. '

Mx = F(x,x,t), .
Mx+Kx+Sx = Fu(x,X,t)=7. (1)

At the numerical solution of the Fq. (1) for the time At the excitation force
is constant. By this reason it is possible to transform the equation of motion
into the modal subspace of the base system. ‘

Eq + Aq+ Aq = T*Fy(x, X, t)1=7 = $s7- 2)

And for the Fg. (2) the modal condensation is applicable! The values of
the n elements of the displacement field at the time 7"+ At can be estimate
approach by the back transformation of the values at time T + At of some
subspace co-ordinates. We can estimate the number of the subspace co-
ordinates that we need to take into account on the basis of the type of the
object, the investigated response sign, of the trend of the excitation.

3. Investigation of the Impact of the Loading Machine

The finite element model of the loading machine is simplified for the dy-
namic calculations. We take into consideration only some specific nodes on
the column (static condensation). The dynamic model contains only the
horizontal displacements and the number of the degrees is 10. The internal
damping of the system is modeled proportional to the stiffness. By this way
the model is a linear, time invariant system. But the force at the impact is
nonlinear, because

— it is proportional to the square of the relative shortening;
- it depends on the direction of the change on the compressive range
(hysteresis)
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— it can apply an effect on the structure only in a restricted range (sep-
aration)

At the analysis of the impact process out of the direct solution of the
equation of motion two 2 degree of freedom modal systems with different
base systems were investigated. In one case the base system is the model of
the loading machine moving freely on the rails. In the second case there is
a flexible support with linear spring.

The ’time photo’ of the impact is recorded with a time window of
At = 0.01 [s] (Fig. 3). The record starts when the loading machine as a
rigid body with constant speed touches the buffer moving from the left to
the right.

Timenistory
1000

e l."ﬁsz:'.‘é’:iﬁ//
800 ‘ 1
A W‘”’# L

[

F 200

-

Fig. 3. Loading machine impact study (displacement of the beam, time photo)

Displ. [em]

The Fig. 4 presents together the impact force and the displacement of
the particle in contact to the buffer.
It can be concluded that

— the change of the force is practically independent of the structure of
the model

— the motion of the particle only at the fixed base system differs to

practically identical characteristics of the other two systems only over
the separation.

The reliability of the applied synthesis is characterised by the deviation
functions of the displacements with respect to the direct response signs.

If we choose a free system for base system then the motion of the
loading machine can be approached within 1 mm precision (1.5% relative
precision) taking into consideration the first two bending modes.

The fixed base system shows a bigger difference.
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Fig. 4. Impact force and displacement of the particle in contact to the buffer
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Fig. 5. Displacements of the loading machine under impact (direct response signs)

At the analysis we use linear functions at the buffer spring, too, instead
of the parabolic one (Fig. 7).

In this case we can only repeat the results of the comparative test.

Finally we can state that

— using a free system as a base system model of the loading machine
with two modal co-ordinates it is applicable for the investigation of
the impact. It can replace the multidegree of freedom model of the
direct method and

~ verify the property of the applied method.
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Fig. 7. Deviation (quasi error) functions of the time histories

4. Concluding Remarks

On the basis of the theoretical investigations and numerical simulatious, the
following conclusion can be drawn:

~ the applied method can be used, but further object specific investiga-
tions are required (e.g. analysis of vehicles). '
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Abstract

In the dynamic analysis and design of vehicles the behaviour of suspensions and tyres
beyond the linear range is often interesting. In order to get acceptable responses it is
necessary to apply large mechanical models with many degrees of freedom. In this paper
a computational method and a computer program, developed for the dynamic analysis
of elastic systems containing local non-linearities are presented. The applicability of this
method and program is demonstrated by numerical experiments using a 648 degrees of
freedom flat-bed truck finite element model. '

Keywords: nonlinear analysis, vehicle dynamics, modal analysis, modal condensation,
transient vibrations

1. Introduction

Nowadays, in the design or research of mobile machines and dynamically ex-
cited structures, besides experiments, the different numerical computational
methods provide efficient tools. However, the solution of most large-scale
(non-linear) dynamic structural problems is usually extremely time consum-
ing. Therefore, in latest decades, considerable efforts have been made in the
application and development of numerical methods, to increase their accu-
racy and speed of computation. For this type of problems the modal time
history analysis, combined with modal condensation, seems to be as a suc- |,
cessful way, where the local non-linearities are considered as pseudo forces
[1], 2], 3]-

The dynamic behaviour of road and off-road vehicles (cars, buses,
trucks, cross country cars, agriculture vehicles, etc.) can be mentioned as
typical examples for the previously discussed dynamical problems in case of
certain driving conditions. For example, passing over road defects (bulge,
hole) or driving on roads of wrong quality. In these cases the non-linear
.properties of vehicles may not be neglected.

With regard to preliminaries, in this paper, a computational proce-
dure and a-computer program is presented, developed for non-linear dy-
namic analysis of large elastic systems with local non-linearities. As it was
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mentioned above, the pseudo force method is applied to the calculation of
internal forces that arise from the effects of local non-linearities [4]. From
the point of view of practical applications, the elaboration of large mechan-
ical (usually finite element) models can give rise to significant difficulties.
Recently the use of commercial finite element programs seems to be the
only reasonable way. In order to utilise this advantage of commercial finite
element programs, the developed procedure consists of two phases. In the
first phase, the linearized and undamped finite element model of the given
structure can be elaborated, using any commercial finite element program.
Great advantage of this way is that the required natural modes (natural fre-
quencies and vectors) can be determined by these programs. Then, in the
second phase, having considered the local non-linearities (springs, dampers,
gaps, etc.) the dynamic analysis can be carried out.

To verify the applicability and efficiency of the developed method and
computer program, using a flat-bed truck finite element model (with 648 de-
grees of freedom), numerical experiments are presented. The accuracy of the
elaborated computer program in comparison with COSMOS/M finite ele-
ment program will be demonstrated.

2. Mathematical Formulation
Assume that the dynamic equilibrium equation of the studied structure is

described by n pieces of coupled second order ordinary differential equations,
as follows,

[M]{x} + [K]{x} = {F ()} + {N ({x}, {=}, {x})}, (1)

where:
M] = mass matrix,
K] = stiffness matrix of the linear part of the structure,

&)
et
Il

vector of time varying forces and kinematic excitations
applied on the structure,

pseudoforce vector of non-linear internal forces,
generalized displacement vector,

generalized velocity vector,

generalized acceleration vector,

time.

o~ f-A-.,—H,—;,—Aﬁ —~—

Mode shapes, for modal time history analysis, are calculated from the
left side of Eg. (1) in the next form, '

(A1) - [M7'KD) {23} = {0}, (2)
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where:
[M]™! = inverse of mass matsix,
] = identity matrix,
{®;} = i-th natural vector,
A = 1-th natural value,

2
{0} zero vector.

If the natural vectors are normalized to mass matrix, then natural
values are the square of the corresponding natural frequency. The natural
vectors as column vectors can be arranged, according to the ascending order
of natural values, into the matrix [®], called the modal matrix. Modal
displacement, velocity and acceleration vectors can be defined as,

) = @) (32)
{x} = [®}{a}, (3-b)
{x} = [®}{q}, (3-¢)
where {q}, {q} and {g} are the modal displacement, velocity and accel-

eration vectors, respectively. Substituting Fgs (3.a — ¢) into Eg. (1), then
premultiplying by [®]7, the transpose of [®], we get,

[@]"MI[@]{&} + [@]T [K][®}{ba} = [8]" ({F} + {N}), (4)

where [®]T[M][®] is the n x n identity matrix, and matrix [®]T[M][®] is
a diagonal one and its diagonal elements are equal to the square of the
corresponding natural frequencies. Thus the modal differential equations
can be written as,

Qi +wlqi=» & ;(Fi+N;), 4L,5,=1,2,...,m, (5)
2,

where subscripts ¢ and j are the indices of the elements of previously ap-
plied matrices and vectors. When only the first m (m > n) pieces of modal
differential equations are applied for dynamic analysis, the amount of com-
putational time can significantly be reduced into an acceptable practical
range (modal condensation). Modal and Rayleigh damping can addition-
ally be included into Eq. (5).

3. On the Developed Computer Program

On the basis of previous relationships an algorithm has been elaborated and
a computer program, called MODANAL, has been coded in MICROSOFT
FORTRAN V.03. This program contains approximately 71200 FORTRAN
statements.
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As it was mentioned above, the complete, modelling and computa-
tional, process is divided into two phasese In the first phase the elaboration
of the (undamped) linearized finite element model and its mode shape cal-
culation can be carried out by the use of an appropriate commercial finite
element program. Thereafter, in the second phase, having utilized data and
results from the first phase and having prepared the additional data, con-
cerning to the description of local non-linearities and external excitations,
the non-linear dynamic analysis can be performed by the developed com-
puter program. This program uses six input files, three output files and
seven temporary files, detailed below.

Input files,

— file to store control parameters, description of non-linear characteris-
tics and the specification of required output,

— file to store natural frequencies and vectors involving into the non-
linear analysis (extracted from the output file of the applied commer-
cial finite element program),

— file to store mass data of the whole model to the calculation of inertial
forces (extracted from the input data file of the applied commercial
finite element program),

- file to store initial displacements and velocities (initial displacements
can be calculated, for example, by static analysis of the linearized finite
element model, carried out by the applied commercial finite element
program),

— file to store kinematic excitations,

~ file to store external forces and moments.

Output files,

— file to store required displacements,
— file to store required velocities,
— file to store required accelerations.

To the numerical step by step solution Hamming’s predictor-corrector
method is applied. The characteristics of local non-linearities are described
by piecewise linear functions, as it is usual in finite element programs.

4. Description of the Applied Truck Model

In order to demonstrate the applicability and effectiveness of the discussed
computational procedure and the related computer program, a simple flat-
bed truck model has been elaborated, making use of COSMOS/M com-
mercial finite element program (Fig. I). In the suspension sets leaf springs
are applied and their elasticity is considered at the extremities of the leaf
springs, while the dampers (in suspensions) are positioned at the midpoint



NON-LINEAR DYNAMIC ANALYSIS 89

of the rigid spring arms, just above the truck axles. In Fig. 1, the damper
and springs of the right hand side front suspension are shown up with short
thick lines. The elasticity and damping of each tyre is represented by three
springs and (viscous) dampers positioned in longitudinal, lateral and verti-
cal directions. Linearized and non-linear suspension spring characteristic are
shown in Fig. 2, where the non-linear sections of spring characteristic rep-
resent the upper and lower bumpers which limit the stroke of suspensions.
The non-linear spring characteristic is shifted along the linear one, in ac-
cordance with the initial displacements arising from payload and the weight
of the truck. Similarly, the linearized and non-linear suspension damper
characteristics are represented in Fig. 3. The linearization of the non-linear
damper is based on manufacturer’s data, and both of them absorb the same
kinetic energy in case of the prescribed frequency and stroke (1.67 Hz and
100 mm stroke). Anti-roll torsion bar (stabilizer) is built in between the
chassis and rear axle.

Fig. 1. Skeleton structure of the studied truck

Finite element model data:

Total number of nodes: 125
Number of degrees of freedom: 648
Total number of beam elements: 159
Total number of mass elements: 51
Total number of non-linear spring elements: 12
Total number of linear spring elements: 8
Total number of non-linear damper elements: 4
Total number of linear damper elements: 8
Total mass (payload is included): 13751kg

It is necessary to emphasize that this truck model has been developed for ver-
tical excitation (its velocity is assumed to be constant during the analysis),
only to demonstrate the applicability and effectiveness of the computational
method and computer program presented here. In this truck finite element
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Fig. 3. Damper characteristics (in suspensions)

model, there can be found such kinds of simplifications which practically do
not affect disadvantageously on the following demonstrations, however, they
may not be applied in most cases in the dynamic analysis of actual struc-
tures. For example, the finite element model of the truck is not detailed
enough for strength calculation, payload is connected to nodes, structural
damping is considered roughly by Rayleigh damping (only to avoid the un-
desirable fictitious resonance because of the lack of internal damping), etc.
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5. Verification of the Applied Method

The accuracy of the developed computer program was comprehensively in-
vestigated earlier. Herein a comparison is made between the presented com-
puter program and COSMOS/M. For this purpose steady state harmonic
force excitations are applied, in vertical direction, at the extremities of the
front axle, in case of linearized springs and damper characteristics. Zero
initial conditions, and no weight of the truck and payload, are applied. Am-
plitude of exciting forces is equal to 50000 N and their frequency is equal
to 9.5 Hz. Calculation is carried out between 0 and 12.5 seconds in 5000
steps. There can be seen, in Fig. 4, the vertical displacement response of
node No. 99 calculated by COSMOS/M. The difference, for this node be-
tween the responses calculated by COSMOS/M and MODANAL, is shown
in Fig. 5 It can be seen from Figs 4 — 5 that the relative difference between
the amplitude of these responses is no more than 0.45%, which is an ex-
cellent agreement. From computational aspect it is worth to mention that
for numerical solution in COSMOS/M Newark’s iterative method, while in
MODANAL a predictor-corrector method is applied.

Usual principle in vehicle structural dynamics is that it is enough to
apply the low natural modes up to 20 Hz. To confirm this principle the same
harmonic kinematic excitation is applied on both tyres of front wheels in
vertical direction. Its amplitude is 20 mm and its frequency, being propor-
tionate to time, is swept from 0 Hz to 20 Hz. The linearized and non-linear
response of node No. 25 (a structural point in chassis), for this sweeping
excitation, can be seen in Figs 6 — 7, respectively. These figures confirm
this reduction of the numbers of natural modes, since the amplitudes of
vibration above 6 Hz significantly decrease in the function of frequencies.
In correspondence with this principle, in this paper, the first thirty natu-
ral modes are applied for dynamic analysis. The magnitude of the highest
natural frequency is equal to 21.45 Hz.

6. Numerical Experiments
6.1. Passing through a Bulge

In this example the better damping properties of non-linear dampers, in
suspensions, compared to the linearized ones are demonstrated. For this
purpose, assume that a small bulge is in the perfectly smooth road surface,
positioned in lateral direction and described by a simple cosine function. Its
length is 1.5 m and its maximum height, in the middle, is equal to 25 mm.
In this case the spring ‘deflections remain in linear range, therefore, the
linearized and non-linear dampers can be compared directly. The truck is
passing over this bulge with the speed of 72 km/h. Both, left and right,
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wheels are passing over it at the same instant.
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Fig. 6. Linearized response of node No. 25 for sweeping excitation

to this excitation, there can be seen the linearized and non-linear vertical
displacement and velocity responses of node No. 40 in Figs & — 9 respectively.
Node No. 40 represents the point of attachment of the right hand side front
suspension to the chassis (Fig. 1).

In Fig. 8 the thick line shows the linearized, while the thin line shows
the nonlinear responses. Similar marking is used for the velocity response
in Fig. 9. Both figures show that the linearized responses are overestimated
and, at the same time, there can be seen the better damping effects of
non-linear dampers.

6.2. Driving on a Minor Road of Wrong Quality

In case of actual vehicles the stroke of suspensions is limited, which is taken
into consideration here by the highly non-linear parts of spring character-
istics (Fig. 2). When a vehicle is driving on a road of wrong quality, the
undercarriages can collide with the body of vehicle at both extreme posi-
tions of suspensions. In Fig. 10 there can be seen road profile realizations,
generated from a two dimensional isotropic power spectral density function
of road surface roughness [5], [6] ,[7]. It is assumed that the truck is driving
on this road with a speed of 36 km/h. Initial displacements and the total
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Fig. 7. Non-linear response of node No. 25 for sweeping excitation

weight of the truck are involved into the dynamic analysis. Time delay be-
tween the excitations of front and rear wheels is considered. In Fig. 11 there
can be seen the linearized and in Fig. 72 the non-linear vertical acceleration
of node No. 48 under the action of this excitation. Node No. 48 is the point
of attachment of one of the front springs in the right hand side suspension
above the front axis. The greater values in non-linear response (greater
lower and upper peaks) with respect to the linearized one, are arising from
the collisions of the front undercarriage to the chassis of the truck at both
extreme positions of this suspension. From Figs 11 - 12 it is clear that, in
this case, the linearized response is underestimated.

6.3. Demonstration of Wheel Bouncing

In order to illustrate the wheel bouncing, the total mass (sum of the dead
mass and payload) of the truck is decreased from 13751 kg into 6696 kg and
its velocity is risen to 108 km/h. Total weight of the truck and the initial
displacements under the action of total weight are included in the analysis.
For the sake of better visualisation the roughness of the road surface is
neglected. In Fig. 13, there can be seen the applied ramp. Its upward-slope
portion is equal to 15 m and its downward-slope portion is equal to 30 m.
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Fig. 9. Linearized and non-linear responses (velocity) of node No. 40.

In the upward-slope portion, the gradient of left track is different from the
gradient of the right track. Therefore there are different vertical velocities
of the left and right hand side wheels at the top of the ramp, originating
a rotation of the truck along its longitudinal axis (rolling motion). Fig. 14
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Fig. 11. Linearized response (acceleration) of node No. 48

shows the rotations of front and rear axles in radians. At the same time,
because of this rotation, there exists a lateral motion of different elements
of the truck. There can be seen in Fig. 15 the lateral motion of the centres
of the right hand side wheels.

In Fig. 16 the vertical position of node No. 80, connected to the road
surface by springs and dampers, is illustrated. Node No. 80 represents the
lowest point of the right hand side rear wheel disc. The thick piecewise
linear line in Fig. 16, symbolizes the right track, while the parallel thin
one represents the position of node No. 80 when the tyre is assumed to be
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Fig. 13. Ramp to demonstrate wheel bouncing

unloaded. The distance between the two piecewise linear lines illustrates
the vertical dimension of the unloaded tyre.

The curved line shows the vertical position of node No. 80 calculated
from its excited displacement while the truck is passed over the ramp. When
the curved line is below the thin piecewise linear line the wheel is in contact
with the surface of the ground (ramp), and when it is above this line the
wheel is bouncing. In Fig. 17, similarly to Fig. 16, the vertical position of
the lowest point of the left hand side rear wheel disc is shown.

The magnitude of bouncing of a given wheel can be determined if the
unloaded position of the lowest point of wheel disk is subtracted from its
excited vertical position at each step. When it is greater than zero the wheel
is bouncing. The magnitudes of the bounces of rear and front wheels are
demonstrated in Figs 18 — 19. In Fig. 18 there can be seen consecutive
bounces of the right hand side rear wheel. An interesting thing can be seen
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in Figs 18 - 19, ﬁamely each wheel is bouncing at the same time from 1.209 s
to 1.386 s, that is the truck is flying over the ramp 5.31 meters.



NON-LINEAR DYNAMIC ANALYSIS 99

A
s 062373 |
5 ZPos- ND8&0
';‘0; Right-track
o Zero-deflect
aC
0.41582
0.20791
0 ! -
0 0.7 . 1.4 24 2.8
‘ . . . . Time,s
Fia. 16. Vertical position of right hand side rear wheel
A
= 0.65305
C
S ZPos-ND 87
@ Left-track
& Zero-deflect
0.43537
0.21768
0 ‘ -
0 0.7 1.4 21 2.8
Time,s

Fig. 17. Vertical position of left hand side rear wheel

7. Conclusions and Closing Remarks

The numerical experiments presented herein indicate the accuracy, effective-
ness and applicability of the presented computational procedure and com-
puter program, using in non-linear structural dynamic analysis. It is par-
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ticularly effective when the order of largest stiffness of local non-linearities
is not significantly higher than the order of stiffness of the linearized part of
the studied structure. Road and off road vehicles (cars, trucks, buses, cross-
country cars, agricultural vehicles, etc.) fall within this category. Numeri-
cal examples show that the discussed method is especially useful in case of
wrong driving conditions, such as, driving vehicles on minor roads of wrong
quality, or driving overland cars on terrain containing large irregularities.

The number of degrees of freedom of the applied truck finite element
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model, in this paper, is equal to 648 and the lower 30 natural modes were
- involved into the non-linear dynamic analysis, up to 20 Hz. The time period
of numerical solution phase, during 5000 steps, was equal to 123 seconds
which contain the time for binary output of modal variables in each step,
and the total solution time period was equal to 197 seconds. Since natural
modes depend on structural properties rather than the number of degrees
of freedom of the applied finite element model, the writer assumes that this
method, in vehicle dynamics, can be applied for significantly larger finite
element models in case of more thousands degrees of freedom, and probably
more than ten thousand ones. To support this assumption, the solution
time duration of a similar non-linear dynamic analysis of a bus structure,
containing 1848 degrees of freedom, was equal to 162 seconds (the total
solution time was 281 seconds). In the analysis the lower 50 natural modes
were involved, up to 20 Hz, and the calculation was also carried out in
5000 steps [8].

In this paper, in all the numerical examples only vertical excitations
are applied, however, the model description and the directions of excitations
are not restricted in this method, consequently, it can also be applied for hor-
izontal dynamics of vehicles. Moreover, additional equations and conditions
of different mechanical effects can be attached easily to the modal equa-
tions, describing the vehicle motion. This possibility significantly enlarges
the fields of application of the method presented in this paper, for example,
the equations of breaking processes for simulation and to support the design
of brake systems (including optimal ABS (Anti-lock Brake System) control
strategies). Other important areas are: the simulation, the behaviour and
support the design of optimal active suspension systems, application in the
identification of vehicle parameters and, at last, numerical stability analysis
of vehicles subjected to complex driving and loading conditions.

A program module for the calculation of internal forces and stresses
can be built in the developed finite element program.
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ANALYSIS OF DYNAMIC LOADS OF THE LATTICE
TYPE MAST STRUCTURE OF A TOWER CRANE
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Abstract

The oscillations of the crane, especially the pendulum motion of the lifted load suspended
from rope, makes the load positioning operation difficult, endangers the potential stability
of the crane and the dynamic forces, due to their oscillating feature, lead to fatigue damage
of structure components. On the other hand, it is not possible to perform a fatigue
analysis without the knowledge of the so-called stress-time histories. All this requires the
application of dynamic analysis methods.

This paper is intended — through the analysis of transient motions and loading of
a lattice type mast structure of a tower crane — to show the possibilities of computer
simulation of dynamic loads and stresses and in promotion of the crane design.

Keywords: crane, dynamics, stress-time-histories, simulation.

1. Developing of the Dynamic Model

It is known that the tower cranes belong to the group of intermittent duty
equipment. It is characteristic for them, too, a tall and slender mast or
tower, a long jib, a complicated load lifting, jib holding and luffing rope sys-
tem, and, furthermore, that they commonly have four autonomous driving
systems which can be started independently one by one, and two or three
instationary motions can exist at the same time (Fig. 1). Under the lifting
and crane or trolley travelling motions, combined with slewing motion of the
crane, the load is subjected to spatial pendulum motion that has significant
influence to the loads of the mast, to support forces and to the potential
stability of the crane.

For determination of loads and stresses in the mast structure it is nec-
essary to analyse the cross-section where the maximum effects are expected.
For the crane investigated (a KB 160/2 type crane) this cross-section is lo-
cated in the vicinity of the lower fixation of the mast in the portal: the
cross-section I — I in Fig. 1, or this is the plane of truncation in Fig. 2. For
this cross-section we can determine a system of 6 loading vectors (Fig. 2):

F - f (FZ,MZ7FIaFyaMr7My) ]
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Fig. 1. Tower crane structure

that can be used for load or stress calculation in all the 8 rods ‘cut’ by that
plane of truncation.

Since we need the loads and stresses in structure as the functions of
time, this fact requires the application of dynamic modelling and mathemat-
ical simulation methods.

Description of combined crane motions requires complicated dynamic

models and due to coincidence of straight-line and slewing motions it is
necessary to count with the developing of centrifugal and Corijolis forces, too,
that makes difficult the drafting of equations of motions for such systems.
' For investigation of dynamic behaviour of tower cranes we have de-
veloped 3 dynamic models: one for analysis of stability [1], [2], [3], one for
calculation of support forces [4], [5], and another one for determination of
loads and stresses in the mast structure [6], [7], [8].

By the aid of the third model mentioned the effect of simultaneous start
and braking of lifting, travelling and slewing motions can be simulated, or
the same can be done with some time delay, or so can be simulated the
independent start of each of them, the start of lifting motion with slacken
rope, or the sudden release (dropping) of the lifted load.

A variation of these dynamic models can be seen in Fig. 3, which was
elaborated and is used for studying the effect of combined raising, travelling
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Fig. 2. Forces and moments in the cutting plane

and slewing motions.

Our model, used for investigation of the effect of combined motions on
the mast structure, has 14 degrees of freedom, among which the mast itself
has 3 degrees: two against bending (in its two main vertical planes) and one
against torsional action around its longitudinal axis.

In these models the generalised co-ordinates are: ¢, ¢s, q13, q14 —
the angular displacements of the axes of driving motors for slewing, lifting,
travelling and luffing motions, respectively, g, — the angular displacement of
rotating table, gz — the torsional deformation of the mast around its main
(vertical) axis, g¢ and g7 — the bending deformations of the mast under hor-
izontal forces measured on the level of jib hinge point in the direction of the
jib (g¢) and perpendicularly to the jib (g7), g12 — the vertical displacement
of the moving block of the luffing rope system (behind the mast, and having
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a mass my), qio — the displacement of the jib outside end (due to relative
rotation around its hinge point), g1; — the horizontal motion of the whole
crane on its track, q4 and ¢s — the horizontal displacements of the load in the
direction of jib projection and perpendicularly to it, g9 — the displacement
of the load in the direction of the lifting rope.

The load lifting, jib holding and luffing rope system (Fig. 1), which is
considered elastic, plays determining role in the loading of the mast. This
system of ropes with different elasticity and the spatial pendulum motion
of the load make the dynamic model rather difficult.

For checking of the quality of these models it was necessary to make
a complex measuring experiment which was carried out on a real crane in
1995 (F4g. 4). Some results will be shown below.

2. Experimental Investigation for Elasticity and Damping
Parameters

The rigidity of an elastic member is nothing else than the rat’ of an action
to the deformation caused by this action: N/m or Nm/rad, depending on the
kind of action (force or moment) and on the deformation caused (elongation,
deflection, torsion, etc.). The rigidity of simple elements can be determined
by the equations of basic statics, but the same in case of girders with com-
pound and varying cross-sections require instrumental static measurements.
Determination of damping characteristics of structures requires exclusively
oscillatory measurements, and the damping constants can be determined
from the diagrams of free damped oscillations and on the basis of so-called
logarithmic decrement.

It is known by specialists that to carry out an instrumental measure-
ment and to evaluate the registrations is a rather difficult and responsible
task, which is definitely true for an equipment with big geometric measures,
especially if it is to be experimented at a construction site.

In the field experiment we have measured the quantities listed below:

- the displacements of different points of the structure under different
static loads (to determine the deformations), using theodolits,

— the support forces under a whole rotation of the crane, using ring type
load cells,

~ the 6 loading vectors in the cross-section I — I of the mast (Fig. 2),
using a specially developed strain gauge system,

— the force in the lifting rope, using a load cell,

— the oscillations on the load, on the outside end of the jib (in 3 di-
rections), in cross-sections of the mast at different levels (with 4 ac-
celerometers in a cross-section in two horizontal directions to measure
the bending and torsional oscillations of the mast),

— the vertical oscillations of the rotating platform and of the bogies.
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During this experiment the crane was subjected to the possible most
extreme static and dynamic load tests: to sudden pull-up of the load (rais-
ing at slacken rope), to raising the load from suspended position, to starting
and braking of the raising, travelling and slewing motions at the same time,
to action of sudden release of the load rope from pulling force at vertical
and inclined directions (imitation of dropping of the load). In the last case
the rope inclination was arranged perpendicularly to the jib horizontal pro-
jection to cause a mast torsional deformation.

It is not possible in this paper to describe this experiment wholly,
nevertheless it will be shown that the dynamic models and their system
equations and mathematical algorithms we have elaborated are workable
and suitable for solving the problems aimed for the analysis of loads and
stresses of the mast. !

3. Some Experimental and Simulation Results

As it was mentioned above, the loads in the mast cross-section I — I (Fig. 1
and Fig. 2) were experimented by a’system of strain gauges, and the same
system of 6 cross-sectional vectors for the same crane were determined by
mathematical simulation, too.

The mathematical simulation provides us with the time functions of
these vectors that makes it possible to create the load- or stress-time-histories
for different loading and operating conditions of the crane.

The simulated stress-time-histories can be seen in Fig. 5 for the corner
bar 4 (04) and for the lattice bar 6 (o). The simulation cases are: raising
the load (R), travelling motion with the jib, standing in the direction of the
crane track (T'), slewing motion (S}, and the simultaneous raising, travelling
and slewing motions (R 4+ T + S), all with the nominal load and with the
simulation time of 20 seconds in every case. The diagrams are plotted at
the same rate (0 ...-85 MPa for o4 and 90 ...-70 MPa for o¢) for different
working conditions, that provides an easy visual comparison.

The analysis of these diagrams makes us possible to draw conclusions
listed below:

1. In the developing of dynamic forces, in excess of static ones, the slewing
motion of the crane plays the determining role. The dynamic effects
of lifting and travelling motions can nearly be neglected in the stress
analysis.

2. The extreme values of stresses are developing always during the first 3 -
4 seconds following the start of the crane operations, that is important
for the duration of simulation time.

3. Three dominant frequencies of oscillations can be observed in the
stress-time diagrams. One of them has a relatively long period of time
and big amplitude which is clearly determined by the length of load
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rope suspended from the jib end (at the length of 40 m f; = 0.08 Hz,
Ty = 13 s). The other two components have higher freqiiencies — one
for the corner bars depending on the bending elasticity of the mast
(fo = 0.69 Hz, T; = 1.45 s), and the other one for the lattice bars
depending on the torsional elasticity of the same mast (f3 = 0.46 Hz,
T3 =2.2s).

4. With respect to varying of stresses it can be stated that for the corner
bars the pulsation of compressing stresses, and for the lattice bars
the alternation of stresses are characteristic. These circumstances are
to be taken into consideration in checking the mast structure for the
static strength and for the fatigue life, too.

Comparison of simulated and measured results is made on the basis of
data in Table 1 and Table 2.

Table 1.
cotnponents | Vs | Vales (8] | Vafaew i | ¢ = M 100 (%)
AF, N 2117 1727 -18.4
AF, N 3778 3785 0.18
AF, kN -387.5 -32.0 -17.4
AM, kNm 94.6 108.6 14.8
AM, kNm 118.6 128.4 8.3
AM, kNm 98.0 105.0 7.14
Table 2.
The loading The eigenfrequencies (Hz) § = %100 (%)
components | Simulated (S) | Measured (M)
AF; 0.727 0.746 2.6
AFy 0.441 0.417 ~-5.4
1.073 0.977 8.9
AF, 1.980 1.800 9.1
AM, 0.438 0.417 -4.8
1.073 0.977 -8.9
AM, 0.732 0.708 -3.3
AM, 0.074 0.134 81.1
0.438 0.422 -3.7

In Table 1 and Table 2 are quoted the simulated (S) and measured
(M) quantities of components of the cross-section vector F, namely:
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~ in Table 1 — the differences of static quantities (AF,, AF, etc.), which
are developed in the structure due to the action of inclined prestressing
rope force and after releasing of it,

— in Table 2 — the characteristic frequencies of free oscillations developed
in the structure after sudden release of that prestressing force, which
were simulated or measured on the same components of cross-section
vector F.

The prestressing rope forces in both simulations and measurements
correspond to the static action of the rated load.

The comparison of these data seems to be convincing on the quality and
acceptability of the models and simulation software developed and presented
here for the dynamic analysis of the lattice type mast of a tower crane with
rotating tower.

4. Conclusions

The dynamic model discussed and the simulation software developed at
the Department of Building and Materials Handling Machines of T.U.B. is
suitable for revealing the loading and stresses in the mast structure of the
tower cranes more precisely than ever before, xand the possibility of creation
of simulated stress-time-histories opens the way of checking the crane mast
structure for fatigue life time.

Furthermore, the dynamic simulation, by giving the displacements,
velocities, accelerations and loads of the structure as the functions of time,
provides a better understanding and more accurate describing of tasks that
are directed to the effective damping of oscillations and to the development
of automated driving and braking systems.

The experiences obtained can be transplanted without any difficulties
to loading and stress analysis of frame structures of the tower cranes with
non-rotating tower or of the portal cranes, too.
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